Hydrogen under pressure
HYROPE aims to advance zero-carbon gas turbine technology by studying hydrogen-based fuel combustion under high pressure, enhancing fuel flexibility and efficiency for power and aviation.
Projectdetails
Introduction
HYROPE proposes to combine unique, fundamental skills of four European laboratories to perform atmospheric and high-pressure experiments coupled to high-performance simulations of an innovative concept for gas turbines to burn zero-carbon, hydrogen-based fuels.
Potential of Gas Turbine Technology
Due to their high-power density, it would be a potential game-changing technology that can deliver energy on demand for both power and aviation. Gas turbine technology has evolved from an abundance of hydrocarbon fossil fuels but has the unique potential to be fuel flexible and burn renewable, zero-carbon hydrogen-based fuels such as hydrogen or ammonia.
Challenges with Hydrogen and Ammonia Fuels
However, these fuels raise several fundamental issues as they have very different combustion properties and emission properties when compared to hydrocarbon fuels.
- Hydrogen is highly diffusive and extremely reactive.
- Its turbulent burning rate exhibits an unexplained strong pressure dependence.
- Predicting whether hydrogen flames that are stable at atmospheric pressure will be stable at higher pressures, as needed in gas turbines, remains an unsolved fundamental problem.
Ammonia is a convenient hydrogen carrier that can be partially decomposed to hydrogen but requires careful control of NOx emissions. How to handle the effects of pressure on these fuels is a major gap in our scientific knowledge.
Research Objectives
HYROPE will study the effects of pressure on the combustion of hydrogen-based fuels in a fuel flexible, staged combustion approach where:
- The first stage is controlled by flame propagation.
- The second one is controlled by autoignition.
This configuration offers enormous potential that has not yet been exploited for such fuels.
Methodology
This can only be achieved through a joint work combining state-of-the-art tools, including:
- Novel experimental facilities at high pressures.
- Advanced optical diagnostics.
- High-performance computing.
Conclusion
The project will accelerate the development of new, high-power density, fuel-flexible combustion systems and unleash the potential of zero-carbon gas turbines.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 12.744.754 |
Totale projectbegroting | € 12.744.754 |
Tijdlijn
Startdatum | 1-9-2024 |
Einddatum | 31-8-2030 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNUpenvoerder
- TECHNISCHE UNIVERSITAT DARMSTADT
- EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
SafE and reliabLE COmbustion Technologies powered by HydrogenSELECT-H aims to enhance hydrogen combustion safety and reliability by developing knowledge, simulation tools, and solutions for transitioning to low-carbon hydrogen systems in various applications. | ERC Advanced... | € 2.499.489 | 2023 | Details |
Control of Hydrogen and Enriched-hydrogen Reacting flows with Water injection and Intensive Strain for ultra-low EmissionsThis research aims to stabilize hydrogen flames with ultra-low NOx emissions through intensive strain and water injection, enhancing clean energy generation and addressing global warming. | ERC Starting... | € 1.499.958 | 2023 | Details |
Fundamentals of Combustion Safety Scenarios for HydrogenSAFE-H2 aims to enhance hydrogen combustion safety through a combination of theory, experiments, and simulations, providing validated models for regulatory frameworks and industry applications. | ERC Advanced... | € 2.498.191 | 2025 | Details |
Hydrogen-Based Intrinsic-Flame-Instability-Controlled Clean and Efficient CombustionThe project aims to enhance combustion efficiency and stability of hydrogen-based fuels by analyzing intrinsic flame instabilities and developing a modeling framework for practical applications. | ERC Advanced... | € 2.498.727 | 2022 | Details |
Thermodynamic Properties for Hydrogen Liquefaction and ProcessingThermoPro-pHy aims to enhance hydrogen property models and metrology at cryogenic temperatures to improve process simulations and reduce costs in hydrogen liquefaction technologies. | ERC Advanced... | € 2.457.146 | 2022 | Details |
SafE and reliabLE COmbustion Technologies powered by Hydrogen
SELECT-H aims to enhance hydrogen combustion safety and reliability by developing knowledge, simulation tools, and solutions for transitioning to low-carbon hydrogen systems in various applications.
Control of Hydrogen and Enriched-hydrogen Reacting flows with Water injection and Intensive Strain for ultra-low Emissions
This research aims to stabilize hydrogen flames with ultra-low NOx emissions through intensive strain and water injection, enhancing clean energy generation and addressing global warming.
Fundamentals of Combustion Safety Scenarios for Hydrogen
SAFE-H2 aims to enhance hydrogen combustion safety through a combination of theory, experiments, and simulations, providing validated models for regulatory frameworks and industry applications.
Hydrogen-Based Intrinsic-Flame-Instability-Controlled Clean and Efficient Combustion
The project aims to enhance combustion efficiency and stability of hydrogen-based fuels by analyzing intrinsic flame instabilities and developing a modeling framework for practical applications.
Thermodynamic Properties for Hydrogen Liquefaction and Processing
ThermoPro-pHy aims to enhance hydrogen property models and metrology at cryogenic temperatures to improve process simulations and reduce costs in hydrogen liquefaction technologies.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
High Hydrogen Gas Turbine Combustor High Pressure Test (Pilot)Dit project ontwikkelt een gas turbine die flexibel kan opereren op 0-100% waterstof met lage emissies, ter ondersteuning van de energietransitie naar groene waterstof en duurzame energieopslag. | Demonstratie... | € 745.860 | 2021 | Details |
Haalbaarheid dynamisch verbrandingsmodel voor waterstofHet project onderzoekt de haalbaarheid van een turbulent verbrandingsmodel voor waterstof/aardgas-mengsels om ultra-lage NOx-emissies te realiseren en de verbrandingseigenschappen te simuleren. | Mkb-innovati... | € 20.000 | 2023 | Details |
Industriële hybride en low-NOx waterstofbranderHet project ontwikkelt een hybride waterstofbrander voor industriële toepassingen, gericht op emissiereductie en flexibiliteit in brandstofgebruik, met als doel duurzame energievoorziening te bevorderen. | Mkb-innovati... | € 125.163 | 2020 | Details |
Haalbaarheidsonderzoek comprimeerproces waterstofgas met hybride compressorHet project richt zich op het ontwikkelen van een vereenvoudigd compressieproces voor waterstofgas met een hybride compressor, ter ondersteuning van waterstofvoertuigen in de mobiliteitssector. | Mkb-innovati... | € 20.000 | 2020 | Details |
CRE WaterstofMKBesturingstechniek onderzoekt de ontwikkeling van efficiënte waterstofmotoren en bijbehorende besturingssystemen voor duurzame toepassingen. | Mkb-innovati... | € 20.000 | 2021 | Details |
High Hydrogen Gas Turbine Combustor High Pressure Test (Pilot)
Dit project ontwikkelt een gas turbine die flexibel kan opereren op 0-100% waterstof met lage emissies, ter ondersteuning van de energietransitie naar groene waterstof en duurzame energieopslag.
Haalbaarheid dynamisch verbrandingsmodel voor waterstof
Het project onderzoekt de haalbaarheid van een turbulent verbrandingsmodel voor waterstof/aardgas-mengsels om ultra-lage NOx-emissies te realiseren en de verbrandingseigenschappen te simuleren.
Industriële hybride en low-NOx waterstofbrander
Het project ontwikkelt een hybride waterstofbrander voor industriële toepassingen, gericht op emissiereductie en flexibiliteit in brandstofgebruik, met als doel duurzame energievoorziening te bevorderen.
Haalbaarheidsonderzoek comprimeerproces waterstofgas met hybride compressor
Het project richt zich op het ontwikkelen van een vereenvoudigd compressieproces voor waterstofgas met een hybride compressor, ter ondersteuning van waterstofvoertuigen in de mobiliteitssector.
CRE Waterstof
MKBesturingstechniek onderzoekt de ontwikkeling van efficiënte waterstofmotoren en bijbehorende besturingssystemen voor duurzame toepassingen.