Control of Hydrogen and Enriched-hydrogen Reacting flows with Water injection and Intensive Strain for ultra-low Emissions
This research aims to stabilize hydrogen flames with ultra-low NOx emissions through intensive strain and water injection, enhancing clean energy generation and addressing global warming.
Projectdetails
Introduction
We are racing against time to find a clean, yet abundant, energy source able to arrest global warming. Hydrogen has all the characteristics to address this challenge: it can be produced cleanly from water; it is incredibly energetic; and more importantly, it is carbon-free.
Challenges of Hydrogen
However, hydrogen’s strong reactivity and diffusivity make the control of its flame in energy-generation devices extremely challenging. Moreover, toxic nitric oxides (NOx), a major concern for air quality, are still abundantly produced in a hydrogen flame.
Need for Solutions
Enabling the use of hydrogen requires solutions where the flame is stable and with ultra-low NOx at the same time, and at any power setting.
Research Focus
In this research, I will study, for the first time, the combination of intensive strain and water injection in the context of lean premixed combustion. My preliminary research has indicated that:
- Intensive strain improves the reactivity of the hydrogen flame.
- Intensive strain simultaneously pushes the NOx down significantly, a property yet to be understood.
- Water injection further reduces the NOx but commonly causes flame extinctions and inefficiencies.
Its combination with hydrogen and intensive strain, by enhancing the flame, offers a way of surpassing these limitations and further allows operating the flame at richer conditions, thus preventing common instabilities from occurring in lean premixed combustion.
Research Objective
The objective of this research is to push the hydrogen flame into a high-strain regime characterised by a stable flame and ultra-low NOx. This involves finding the extreme limits and physical knowledge allowing full control of the reacting flow in such a regime.
Methodology
The flame dynamics, still unknown in this regime, will be explored for the first time and fully characterised in this research by using:
- High-fidelity simulations
- Experiments
- Theoretical analyses
Expected Outcomes
The gathered understanding will allow the control of hydrogen flames at any power setting. This will pave the way for the exploitation of green energy.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.958 |
Totale projectbegroting | € 1.499.958 |
Tijdlijn
Startdatum | 1-5-2023 |
Einddatum | 30-4-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- TECHNISCHE UNIVERSITEIT DELFTpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Hydrogen-Based Intrinsic-Flame-Instability-Controlled Clean and Efficient CombustionThe project aims to enhance combustion efficiency and stability of hydrogen-based fuels by analyzing intrinsic flame instabilities and developing a modeling framework for practical applications. | ERC Advanced... | € 2.498.727 | 2022 | Details |
Hydrogen under pressureHYROPE aims to advance zero-carbon gas turbine technology by studying hydrogen-based fuel combustion under high pressure, enhancing fuel flexibility and efficiency for power and aviation. | ERC Synergy ... | € 12.744.754 | 2024 | Details |
SafE and reliabLE COmbustion Technologies powered by HydrogenSELECT-H aims to enhance hydrogen combustion safety and reliability by developing knowledge, simulation tools, and solutions for transitioning to low-carbon hydrogen systems in various applications. | ERC Advanced... | € 2.499.489 | 2023 | Details |
Fundamentals of Combustion Safety Scenarios for HydrogenSAFE-H2 aims to enhance hydrogen combustion safety through a combination of theory, experiments, and simulations, providing validated models for regulatory frameworks and industry applications. | ERC Advanced... | € 2.498.191 | 2025 | Details |
Hydrogen Embrittlement mitigation through Layered diffusion patterns in MetalsThis project aims to mitigate hydrogen embrittlement in metals through additive manufacturing techniques that tailor hydrogen diffusion, enhancing the durability of components for green hydrogen applications. | ERC Starting... | € 1.499.375 | 2024 | Details |
Hydrogen-Based Intrinsic-Flame-Instability-Controlled Clean and Efficient Combustion
The project aims to enhance combustion efficiency and stability of hydrogen-based fuels by analyzing intrinsic flame instabilities and developing a modeling framework for practical applications.
Hydrogen under pressure
HYROPE aims to advance zero-carbon gas turbine technology by studying hydrogen-based fuel combustion under high pressure, enhancing fuel flexibility and efficiency for power and aviation.
SafE and reliabLE COmbustion Technologies powered by Hydrogen
SELECT-H aims to enhance hydrogen combustion safety and reliability by developing knowledge, simulation tools, and solutions for transitioning to low-carbon hydrogen systems in various applications.
Fundamentals of Combustion Safety Scenarios for Hydrogen
SAFE-H2 aims to enhance hydrogen combustion safety through a combination of theory, experiments, and simulations, providing validated models for regulatory frameworks and industry applications.
Hydrogen Embrittlement mitigation through Layered diffusion patterns in Metals
This project aims to mitigate hydrogen embrittlement in metals through additive manufacturing techniques that tailor hydrogen diffusion, enhancing the durability of components for green hydrogen applications.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Haalbaarheid dynamisch verbrandingsmodel voor waterstofHet project onderzoekt de haalbaarheid van een turbulent verbrandingsmodel voor waterstof/aardgas-mengsels om ultra-lage NOx-emissies te realiseren en de verbrandingseigenschappen te simuleren. | Mkb-innovati... | € 20.000 | 2023 | Details |
High Hydrogen Gas Turbine Combustor High Pressure Test (Pilot)Dit project ontwikkelt een gas turbine die flexibel kan opereren op 0-100% waterstof met lage emissies, ter ondersteuning van de energietransitie naar groene waterstof en duurzame energieopslag. | Demonstratie... | € 745.860 | 2021 | Details |
Waterstof brander met elektrische luchtvoorverwarming voor proces fornuizenDit project past een LSV® brander aan voor gebruik met 100% waterstof en elektrische luchtvoorverwarming, gericht op lage NOx-emissies en optimale warmteverdeling in industriële processen. | Demonstratie... | € 32.648 | 2021 | Details |
Industriële hybride en low-NOx waterstofbranderHet project ontwikkelt een hybride waterstofbrander voor industriële toepassingen, gericht op emissiereductie en flexibiliteit in brandstofgebruik, met als doel duurzame energievoorziening te bevorderen. | Mkb-innovati... | € 125.163 | 2020 | Details |
Pilot oxyfuel verbranding voor branders van process fornuizen oor afvang van CO2Dit project ontwikkelt een veilige oxyfuel brander voor industriële processen met 100% zuurstof en verbrandingsgasrecycling, gericht op CO2-reductie en verbeterde warmteverdeling. | Demonstratie... | € 216.800 | 2024 | Details |
Haalbaarheid dynamisch verbrandingsmodel voor waterstof
Het project onderzoekt de haalbaarheid van een turbulent verbrandingsmodel voor waterstof/aardgas-mengsels om ultra-lage NOx-emissies te realiseren en de verbrandingseigenschappen te simuleren.
High Hydrogen Gas Turbine Combustor High Pressure Test (Pilot)
Dit project ontwikkelt een gas turbine die flexibel kan opereren op 0-100% waterstof met lage emissies, ter ondersteuning van de energietransitie naar groene waterstof en duurzame energieopslag.
Waterstof brander met elektrische luchtvoorverwarming voor proces fornuizen
Dit project past een LSV® brander aan voor gebruik met 100% waterstof en elektrische luchtvoorverwarming, gericht op lage NOx-emissies en optimale warmteverdeling in industriële processen.
Industriële hybride en low-NOx waterstofbrander
Het project ontwikkelt een hybride waterstofbrander voor industriële toepassingen, gericht op emissiereductie en flexibiliteit in brandstofgebruik, met als doel duurzame energievoorziening te bevorderen.
Pilot oxyfuel verbranding voor branders van process fornuizen oor afvang van CO2
Dit project ontwikkelt een veilige oxyfuel brander voor industriële processen met 100% zuurstof en verbrandingsgasrecycling, gericht op CO2-reductie en verbeterde warmteverdeling.