Hydrogen-Based Intrinsic-Flame-Instability-Controlled Clean and Efficient Combustion
The project aims to enhance combustion efficiency and stability of hydrogen-based fuels by analyzing intrinsic flame instabilities and developing a modeling framework for practical applications.
Projectdetails
Introduction
Chemical energy carriers will play an essential role for future energy systems, where harvesting and utilization of renewable energy occur not necessarily at the same time or place. Hence, long-time storage and long-range transport of energy are needed.
Hydrogen-based Energy Carriers
For this, hydrogen-based energy carriers, such as hydrogen and ammonia, hold great promise. Their utilization by combustion-based energy conversion has many advantages, including:
- Versatile use for heat and power
- Robust and flexible technologies
- Suitability for a continuous energy transition
Challenges in Combustion
However, combustion of both hydrogen and ammonia is very challenging. For technically relevant conditions, both form intrinsic, so-called thermo-diffusive instabilities (very different from the often-discussed thermo-acoustic instabilities), which can increase burn rates by a stunning factor of three to five! Without considering this, computational design is impossible.
Current Understanding
While linear theories exist, little is understood for the more relevant non-linear regime. Beyond some data and observations, virtually nothing is known about the interactions of intrinsic flame instabilities (IFI) with turbulence.
Research Approach
Here, rigorous analysis of new data for neat H2 and NH3/H2-blends from simulations and experiments will lead to a quantitative understanding of the relevant aspects. From this, a novel modeling framework with uncertainty estimates will be developed.
Key Hypothesis
The key hypothesis is that combustion processes of hydrogen-based fuels can be improved by targeted weakening or promotion of IFI. This kind of instability-controlled combustion can jointly improve:
- Efficiency
- Emissions
- Stability
- Fuel flexibility in different combustion devices, such as:
- Spark-ignition engines
- Gas turbines
- Industrial burners
Demonstration
Guided by the developed knowledge and tools, this intrinsic-flame-instability-controlled combustion concept will be demonstrated computationally and experimentally for two sample applications.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.498.727 |
Totale projectbegroting | € 2.498.727 |
Tijdlijn
Startdatum | 1-6-2022 |
Einddatum | 31-5-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Control of Hydrogen and Enriched-hydrogen Reacting flows with Water injection and Intensive Strain for ultra-low EmissionsThis research aims to stabilize hydrogen flames with ultra-low NOx emissions through intensive strain and water injection, enhancing clean energy generation and addressing global warming. | ERC Starting... | € 1.499.958 | 2023 | Details |
Fundamentals of Combustion Safety Scenarios for HydrogenSAFE-H2 aims to enhance hydrogen combustion safety through a combination of theory, experiments, and simulations, providing validated models for regulatory frameworks and industry applications. | ERC Advanced... | € 2.498.191 | 2025 | Details |
SafE and reliabLE COmbustion Technologies powered by HydrogenSELECT-H aims to enhance hydrogen combustion safety and reliability by developing knowledge, simulation tools, and solutions for transitioning to low-carbon hydrogen systems in various applications. | ERC Advanced... | € 2.499.489 | 2023 | Details |
Taming Combustion Instabilities by Design PrinciplesTACOS aims to revolutionize gas turbine design by utilizing exceptional points to enhance combustion stability and fuel flexibility, leading to safer, low-emission energy and aviation solutions. | ERC Starting... | € 1.499.993 | 2023 | Details |
Hydrogen under pressureHYROPE aims to advance zero-carbon gas turbine technology by studying hydrogen-based fuel combustion under high pressure, enhancing fuel flexibility and efficiency for power and aviation. | ERC Synergy ... | € 12.744.754 | 2024 | Details |
Control of Hydrogen and Enriched-hydrogen Reacting flows with Water injection and Intensive Strain for ultra-low Emissions
This research aims to stabilize hydrogen flames with ultra-low NOx emissions through intensive strain and water injection, enhancing clean energy generation and addressing global warming.
Fundamentals of Combustion Safety Scenarios for Hydrogen
SAFE-H2 aims to enhance hydrogen combustion safety through a combination of theory, experiments, and simulations, providing validated models for regulatory frameworks and industry applications.
SafE and reliabLE COmbustion Technologies powered by Hydrogen
SELECT-H aims to enhance hydrogen combustion safety and reliability by developing knowledge, simulation tools, and solutions for transitioning to low-carbon hydrogen systems in various applications.
Taming Combustion Instabilities by Design Principles
TACOS aims to revolutionize gas turbine design by utilizing exceptional points to enhance combustion stability and fuel flexibility, leading to safer, low-emission energy and aviation solutions.
Hydrogen under pressure
HYROPE aims to advance zero-carbon gas turbine technology by studying hydrogen-based fuel combustion under high pressure, enhancing fuel flexibility and efficiency for power and aviation.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Haalbaarheid dynamisch verbrandingsmodel voor waterstofHet project onderzoekt de haalbaarheid van een turbulent verbrandingsmodel voor waterstof/aardgas-mengsels om ultra-lage NOx-emissies te realiseren en de verbrandingseigenschappen te simuleren. | Mkb-innovati... | € 20.000 | 2023 | Details |
High Hydrogen Gas Turbine Combustor High Pressure Test (Pilot)Dit project ontwikkelt een gas turbine die flexibel kan opereren op 0-100% waterstof met lage emissies, ter ondersteuning van de energietransitie naar groene waterstof en duurzame energieopslag. | Demonstratie... | € 745.860 | 2021 | Details |
CRE WaterstofMKBesturingstechniek onderzoekt de ontwikkeling van efficiënte waterstofmotoren en bijbehorende besturingssystemen voor duurzame toepassingen. | Mkb-innovati... | € 20.000 | 2021 | Details |
Industriële hybride en low-NOx waterstofbranderHet project ontwikkelt een hybride waterstofbrander voor industriële toepassingen, gericht op emissiereductie en flexibiliteit in brandstofgebruik, met als doel duurzame energievoorziening te bevorderen. | Mkb-innovati... | € 125.163 | 2020 | Details |
Waterstof brander met elektrische luchtvoorverwarming voor proces fornuizenDit project past een LSV® brander aan voor gebruik met 100% waterstof en elektrische luchtvoorverwarming, gericht op lage NOx-emissies en optimale warmteverdeling in industriële processen. | Demonstratie... | € 32.648 | 2021 | Details |
Haalbaarheid dynamisch verbrandingsmodel voor waterstof
Het project onderzoekt de haalbaarheid van een turbulent verbrandingsmodel voor waterstof/aardgas-mengsels om ultra-lage NOx-emissies te realiseren en de verbrandingseigenschappen te simuleren.
High Hydrogen Gas Turbine Combustor High Pressure Test (Pilot)
Dit project ontwikkelt een gas turbine die flexibel kan opereren op 0-100% waterstof met lage emissies, ter ondersteuning van de energietransitie naar groene waterstof en duurzame energieopslag.
CRE Waterstof
MKBesturingstechniek onderzoekt de ontwikkeling van efficiënte waterstofmotoren en bijbehorende besturingssystemen voor duurzame toepassingen.
Industriële hybride en low-NOx waterstofbrander
Het project ontwikkelt een hybride waterstofbrander voor industriële toepassingen, gericht op emissiereductie en flexibiliteit in brandstofgebruik, met als doel duurzame energievoorziening te bevorderen.
Waterstof brander met elektrische luchtvoorverwarming voor proces fornuizen
Dit project past een LSV® brander aan voor gebruik met 100% waterstof en elektrische luchtvoorverwarming, gericht op lage NOx-emissies en optimale warmteverdeling in industriële processen.