Hydrogen-Based Intrinsic-Flame-Instability-Controlled Clean and Efficient Combustion

The project aims to enhance combustion efficiency and stability of hydrogen-based fuels by analyzing intrinsic flame instabilities and developing a modeling framework for practical applications.

Subsidie
€ 2.498.727
2022

Projectdetails

Introduction

Chemical energy carriers will play an essential role for future energy systems, where harvesting and utilization of renewable energy occur not necessarily at the same time or place. Hence, long-time storage and long-range transport of energy are needed.

Hydrogen-based Energy Carriers

For this, hydrogen-based energy carriers, such as hydrogen and ammonia, hold great promise. Their utilization by combustion-based energy conversion has many advantages, including:

  • Versatile use for heat and power
  • Robust and flexible technologies
  • Suitability for a continuous energy transition

Challenges in Combustion

However, combustion of both hydrogen and ammonia is very challenging. For technically relevant conditions, both form intrinsic, so-called thermo-diffusive instabilities (very different from the often-discussed thermo-acoustic instabilities), which can increase burn rates by a stunning factor of three to five! Without considering this, computational design is impossible.

Current Understanding

While linear theories exist, little is understood for the more relevant non-linear regime. Beyond some data and observations, virtually nothing is known about the interactions of intrinsic flame instabilities (IFI) with turbulence.

Research Approach

Here, rigorous analysis of new data for neat H2 and NH3/H2-blends from simulations and experiments will lead to a quantitative understanding of the relevant aspects. From this, a novel modeling framework with uncertainty estimates will be developed.

Key Hypothesis

The key hypothesis is that combustion processes of hydrogen-based fuels can be improved by targeted weakening or promotion of IFI. This kind of instability-controlled combustion can jointly improve:

  1. Efficiency
  2. Emissions
  3. Stability
  4. Fuel flexibility in different combustion devices, such as:
    • Spark-ignition engines
    • Gas turbines
    • Industrial burners

Demonstration

Guided by the developed knowledge and tools, this intrinsic-flame-instability-controlled combustion concept will be demonstrated computationally and experimentally for two sample applications.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.498.727
Totale projectbegroting€ 2.498.727

Tijdlijn

Startdatum1-6-2022
Einddatum31-5-2027
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHENpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC Starting...

Control of Hydrogen and Enriched-hydrogen Reacting flows with Water injection and Intensive Strain for ultra-low Emissions

This research aims to stabilize hydrogen flames with ultra-low NOx emissions through intensive strain and water injection, enhancing clean energy generation and addressing global warming.

€ 1.499.958
ERC Advanced...

Fundamentals of Combustion Safety Scenarios for Hydrogen

SAFE-H2 aims to enhance hydrogen combustion safety through a combination of theory, experiments, and simulations, providing validated models for regulatory frameworks and industry applications.

€ 2.498.191
ERC Advanced...

SafE and reliabLE COmbustion Technologies powered by Hydrogen

SELECT-H aims to enhance hydrogen combustion safety and reliability by developing knowledge, simulation tools, and solutions for transitioning to low-carbon hydrogen systems in various applications.

€ 2.499.489
ERC Starting...

Taming Combustion Instabilities by Design Principles

TACOS aims to revolutionize gas turbine design by utilizing exceptional points to enhance combustion stability and fuel flexibility, leading to safer, low-emission energy and aviation solutions.

€ 1.499.993
ERC Synergy ...

Hydrogen under pressure

HYROPE aims to advance zero-carbon gas turbine technology by studying hydrogen-based fuel combustion under high pressure, enhancing fuel flexibility and efficiency for power and aviation.

€ 12.744.754

Vergelijkbare projecten uit andere regelingen

Mkb-innovati...

Haalbaarheid dynamisch verbrandingsmodel voor waterstof

Het project onderzoekt de haalbaarheid van een turbulent verbrandingsmodel voor waterstof/aardgas-mengsels om ultra-lage NOx-emissies te realiseren en de verbrandingseigenschappen te simuleren.

€ 20.000
Demonstratie...

High Hydrogen Gas Turbine Combustor High Pressure Test (Pilot)

Dit project ontwikkelt een gas turbine die flexibel kan opereren op 0-100% waterstof met lage emissies, ter ondersteuning van de energietransitie naar groene waterstof en duurzame energieopslag.

€ 745.860
Mkb-innovati...

CRE Waterstof

MKBesturingstechniek onderzoekt de ontwikkeling van efficiënte waterstofmotoren en bijbehorende besturingssystemen voor duurzame toepassingen.

€ 20.000
Mkb-innovati...

Industriële hybride en low-NOx waterstofbrander

Het project ontwikkelt een hybride waterstofbrander voor industriële toepassingen, gericht op emissiereductie en flexibiliteit in brandstofgebruik, met als doel duurzame energievoorziening te bevorderen.

€ 125.163
Demonstratie...

Waterstof brander met elektrische luchtvoorverwarming voor proces fornuizen

Dit project past een LSV® brander aan voor gebruik met 100% waterstof en elektrische luchtvoorverwarming, gericht op lage NOx-emissies en optimale warmteverdeling in industriële processen.

€ 32.648