Hydrogen Embrittlement mitigation through Layered diffusion patterns in Metals
This project aims to mitigate hydrogen embrittlement in metals through additive manufacturing techniques that tailor hydrogen diffusion, enhancing the durability of components for green hydrogen applications.
Projectdetails
Introduction
Hydrogen embrittlement (HE) of metallic materials is one of the main challenges for the adoption of green H2 as a clean fuel. Degradation of pipelines and vessels is nowadays avoided by conservative design and material selection, but novel mitigation strategies for hydrogen embrittlement will foster cost-effective technologies.
Proposed Strategy
I envisage an Additive Manufacturing strategy to tune hydrogen diffusion as an effective and novel method to mitigate or even suppress HE. The success of this framework requires the reconsideration of modelling and experimental techniques to characterise hydrogen transport and embrittlement in metals.
Background and Methodology
My background in computational mechanics, hydrogen diffusion simulation, and Laser Powder Bed Fusion (LPBF) will guide the approach. The methodology will be enriched by innovative phase tailoring strategies and advanced computational and optimisation procedures.
Tailoring Hydrogen Diffusion
Tailoring hydrogen diffusion in steels will be accomplished by exploiting the enormous difference in diffusivity between fcc and bcc iron phases.
- Duplex Stainless Steels (DSS) that combine austenite (fcc) and ferrite (bcc) phases are thus considered as a first option to tune diffusion paths.
- Additionally, localized nitrogen evaporation to directly control fcc or bcc formation during micro-LPBF of High Nitrogen Steels (HNS) will be achieved by local variation of laser parameters.
Main Goal
The main goal is to protect critical regions and therefore to suppress hydrogen-assisted cracking.
Optimization of Shielding Effects
To produce shielding effects around stress concentrators, bcc/fcc “helmets” will be optimised by coupled modelling frameworks including hydrogen transport and fracture.
Assessment and Evaluation
Trapping and multiphase diffusion will be assessed by novel modelling procedures from thermal desorption and permeation experimental results. Finally, the effectiveness of the optimised tailored helmets will be evaluated by in-situ testing in gaseous H2, paving the way for resistant components to transport and store high-pressure hydrogen.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.375 |
Totale projectbegroting | € 1.499.375 |
Tijdlijn
Startdatum | 1-11-2024 |
Einddatum | 31-10-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- UNIVERSIDAD DE BURGOSpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Isolation, observation and quantification of mechanisms responsible for hydrogen embrittlement by TRITIum based microMEchanicsTRITIME aims to quantify hydrogen embrittlement mechanisms at the defect level using tritium-based techniques, enhancing understanding for optimizing hydrogen storage and distribution materials. | ERC Consolid... | € 1.994.136 | 2022 | Details |
Control of Hydrogen and Enriched-hydrogen Reacting flows with Water injection and Intensive Strain for ultra-low EmissionsThis research aims to stabilize hydrogen flames with ultra-low NOx emissions through intensive strain and water injection, enhancing clean energy generation and addressing global warming. | ERC Starting... | € 1.499.958 | 2023 | Details |
Fundamentals of Combustion Safety Scenarios for HydrogenSAFE-H2 aims to enhance hydrogen combustion safety through a combination of theory, experiments, and simulations, providing validated models for regulatory frameworks and industry applications. | ERC Advanced... | € 2.498.191 | 2025 | Details |
Bulk-like Joints by Gas Actuated BondingThis project aims to enhance metal joining by using chemical vapour transport to create stronger, corrosion-resistant joints through a transient liquid phase, applicable in demanding environments. | ERC Starting... | € 2.300.000 | 2024 | Details |
Heterogeneities-guided alloy design by and for 4D printingHeteroGenius4D aims to develop tailored alloys for additive manufacturing by leveraging microstructural heterogeneities to enhance performance and enable 4D printing through integrated computational materials engineering. | ERC Starting... | € 1.499.999 | 2024 | Details |
Isolation, observation and quantification of mechanisms responsible for hydrogen embrittlement by TRITIum based microMEchanics
TRITIME aims to quantify hydrogen embrittlement mechanisms at the defect level using tritium-based techniques, enhancing understanding for optimizing hydrogen storage and distribution materials.
Control of Hydrogen and Enriched-hydrogen Reacting flows with Water injection and Intensive Strain for ultra-low Emissions
This research aims to stabilize hydrogen flames with ultra-low NOx emissions through intensive strain and water injection, enhancing clean energy generation and addressing global warming.
Fundamentals of Combustion Safety Scenarios for Hydrogen
SAFE-H2 aims to enhance hydrogen combustion safety through a combination of theory, experiments, and simulations, providing validated models for regulatory frameworks and industry applications.
Bulk-like Joints by Gas Actuated Bonding
This project aims to enhance metal joining by using chemical vapour transport to create stronger, corrosion-resistant joints through a transient liquid phase, applicable in demanding environments.
Heterogeneities-guided alloy design by and for 4D printing
HeteroGenius4D aims to develop tailored alloys for additive manufacturing by leveraging microstructural heterogeneities to enhance performance and enable 4D printing through integrated computational materials engineering.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Waterstofbrosheid "opgelost": sterkere en duurzamere schroevenHet project ontwikkelt een uniek productieproces om waterstofbrosheid in geharde stalen schroeven te verminderen voor betere concurrentie. | Mkb-innovati... | € 187.775 | 2021 | Details |
Haalbaarheid dynamisch verbrandingsmodel voor waterstofHet project onderzoekt de haalbaarheid van een turbulent verbrandingsmodel voor waterstof/aardgas-mengsels om ultra-lage NOx-emissies te realiseren en de verbrandingseigenschappen te simuleren. | Mkb-innovati... | € 20.000 | 2023 | Details |
Highly efficient and sustainable decarbonisation of bright annealing process by recovery and reuse of H2The LIFE H2Reuse project aims to reduce CO2 emissions in the steel industry's bright annealing process by recovering and reusing hydrogen, enhancing efficiency and sustainability. | LIFE Standar... | € 2.022.210 | 2024 | Details |
HyTwinSHM NEXT ontwikkelt innovatieve draadloze sensornodes voor het real-time monitoren van waterstofopslagtanks om vroegtijdig scheuren te detecteren en onderhoudskosten te verlagen. | Mkb-innovati... | € 20.000 | 2023 | Details |
Multi Material Additive Manufacturing with Electrostatic Cold SprayMadeCold aims to revolutionize additive manufacturing by developing a novel solid state deposition process that enhances efficiency, scalability, and material versatility for aerospace, energy, and hybrid sectors. | EIC Pathfinder | € 2.915.568 | 2024 | Details |
Waterstofbrosheid "opgelost": sterkere en duurzamere schroeven
Het project ontwikkelt een uniek productieproces om waterstofbrosheid in geharde stalen schroeven te verminderen voor betere concurrentie.
Haalbaarheid dynamisch verbrandingsmodel voor waterstof
Het project onderzoekt de haalbaarheid van een turbulent verbrandingsmodel voor waterstof/aardgas-mengsels om ultra-lage NOx-emissies te realiseren en de verbrandingseigenschappen te simuleren.
Highly efficient and sustainable decarbonisation of bright annealing process by recovery and reuse of H2
The LIFE H2Reuse project aims to reduce CO2 emissions in the steel industry's bright annealing process by recovering and reusing hydrogen, enhancing efficiency and sustainability.
HyTwin
SHM NEXT ontwikkelt innovatieve draadloze sensornodes voor het real-time monitoren van waterstofopslagtanks om vroegtijdig scheuren te detecteren en onderhoudskosten te verlagen.
Multi Material Additive Manufacturing with Electrostatic Cold Spray
MadeCold aims to revolutionize additive manufacturing by developing a novel solid state deposition process that enhances efficiency, scalability, and material versatility for aerospace, energy, and hybrid sectors.