Taming Combustion Instabilities by Design Principles
TACOS aims to revolutionize gas turbine design by utilizing exceptional points to enhance combustion stability and fuel flexibility, leading to safer, low-emission energy and aviation solutions.
Projectdetails
Introduction
Both the energy and aviation sectors rely on gas turbines, a combustion system continuously optimized since its invention during World War II. They constitute a main pillar for tomorrow's energy and aviation mix to tackle climate change.
Challenges in Combustor Design
However, fuel flexibility is stretched to its limits for conventional combustor designs. Combustion instabilities hinder a new generation of safe and low-emission gas turbines. This calls for disruptive design approaches to enforce crucially needed step-change technologies.
Objectives of TACOS
The overarching aim of TACOS is to break the bottleneck of combustion instabilities by novel, physics-driven design principles based on the latest theoretical findings. The combustion community, including myself, has discovered "exceptional points" (EPs), which are known from theoretical physics to feature intriguing, counter-intuitive physical properties.
Preliminary Results
Our preliminary results confirm that EPs:
- Rapidly switch the combustor stability from unstable to stable.
- Are well-controllable by both the acoustics of the chamber and the flame characteristics.
Key Goals
TACOS takes a leap forward and exploits the unique properties of EPs for the conception of novel combustors through three objectives:
- Objective A: Tailor the characteristics of both gaseous (land-based gas turbines) and spray flames (aeroengines) by carbon-free fuels (hydrogen + ammonia) and sustainable aviation fuels.
- Objective B: Optimize simultaneously the emission rates and the stability of the combustion chamber by designing the combustor close to the EP.
- Objective C: Quantify the design robustness by experiments at atmospheric and high-pressure conditions to learn design principles using explainable machine learning methods.
Expected Outcomes
As a result, TACOS will not only produce an unprecedented, computer-aided and optimization-centric design software for safe, robust, and clean gas turbines, but will also open a new research field on design principles and amplify fundamental breakthroughs in combustion instability (CI) research.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.993 |
Totale projectbegroting | € 1.499.993 |
Tijdlijn
Startdatum | 1-6-2023 |
Einddatum | 31-5-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- TECHNISCHE UNIVERSITAT BERLINpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Hydrogen-Based Intrinsic-Flame-Instability-Controlled Clean and Efficient CombustionThe project aims to enhance combustion efficiency and stability of hydrogen-based fuels by analyzing intrinsic flame instabilities and developing a modeling framework for practical applications. | ERC Advanced... | € 2.498.727 | 2022 | Details |
Innovative Digital Twins for Advanced Combustion TechnologiesThe project aims to develop a digital twin for predicting combustion processes, enhancing the design of sustainable energy systems while reducing R&D costs and time. | ERC Proof of... | € 150.000 | 2024 | Details |
POROus media: Life and dEath of their wAves and FlamesPOROLEAF aims to explore the synergy between turbulent combustion and porous media to enhance understanding and design of cleaner, stable combustion processes. | ERC Starting... | € 1.499.942 | 2024 | Details |
Hydrogen under pressureHYROPE aims to advance zero-carbon gas turbine technology by studying hydrogen-based fuel combustion under high pressure, enhancing fuel flexibility and efficiency for power and aviation. | ERC Synergy ... | € 12.744.754 | 2024 | Details |
Fundamentals of Combustion Safety Scenarios for HydrogenSAFE-H2 aims to enhance hydrogen combustion safety through a combination of theory, experiments, and simulations, providing validated models for regulatory frameworks and industry applications. | ERC Advanced... | € 2.498.191 | 2025 | Details |
Hydrogen-Based Intrinsic-Flame-Instability-Controlled Clean and Efficient Combustion
The project aims to enhance combustion efficiency and stability of hydrogen-based fuels by analyzing intrinsic flame instabilities and developing a modeling framework for practical applications.
Innovative Digital Twins for Advanced Combustion Technologies
The project aims to develop a digital twin for predicting combustion processes, enhancing the design of sustainable energy systems while reducing R&D costs and time.
POROus media: Life and dEath of their wAves and Flames
POROLEAF aims to explore the synergy between turbulent combustion and porous media to enhance understanding and design of cleaner, stable combustion processes.
Hydrogen under pressure
HYROPE aims to advance zero-carbon gas turbine technology by studying hydrogen-based fuel combustion under high pressure, enhancing fuel flexibility and efficiency for power and aviation.
Fundamentals of Combustion Safety Scenarios for Hydrogen
SAFE-H2 aims to enhance hydrogen combustion safety through a combination of theory, experiments, and simulations, providing validated models for regulatory frameworks and industry applications.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Haalbaarheid dynamisch verbrandingsmodel voor waterstofHet project onderzoekt de haalbaarheid van een turbulent verbrandingsmodel voor waterstof/aardgas-mengsels om ultra-lage NOx-emissies te realiseren en de verbrandingseigenschappen te simuleren. | Mkb-innovati... | € 20.000 | 2023 | Details |
Combustion Pressure Sensor (CPS)Het project richt zich op het ontwikkelen van een nieuwe Combustion Pressure Sensor (CPS) om de efficiëntie van verbrandingsmotoren te verbeteren en de milieu-impact te verminderen. | Mkb-innovati... | € 199.500 | 2017 | Details |
Turbulent Jet Ignition voor alternatieve brandstoffen.ADS onderzoekt de haalbaarheid van Turbulent Jet Ignition voor alternatieve brandstoffen om duurzame mobiliteit en luchtkwaliteit te verbeteren. | Mkb-innovati... | € 19.270 | 2023 | Details |
Ultra-low emission gas turbine combustorOpra Turbines en Dacolt ontwikkelen nieuwe turbine technologie en CFD-algoritmes voor de OP16 turbine, die efficiënt laagcalorisch gas omzet in elektriciteit. | Mkb-innovati... | € 103.040 | 2015 | Details |
Toroidal Propellers for Efficient and Sustainable AviationTorPropel aims to enhance aircraft propulsion by developing efficient, noise-reducing toroidal propellers using advanced composites and robotics, improving performance and sustainability in aviation. | EIC Pathfinder | € 2.797.407 | 2025 | Details |
Haalbaarheid dynamisch verbrandingsmodel voor waterstof
Het project onderzoekt de haalbaarheid van een turbulent verbrandingsmodel voor waterstof/aardgas-mengsels om ultra-lage NOx-emissies te realiseren en de verbrandingseigenschappen te simuleren.
Combustion Pressure Sensor (CPS)
Het project richt zich op het ontwikkelen van een nieuwe Combustion Pressure Sensor (CPS) om de efficiëntie van verbrandingsmotoren te verbeteren en de milieu-impact te verminderen.
Turbulent Jet Ignition voor alternatieve brandstoffen.
ADS onderzoekt de haalbaarheid van Turbulent Jet Ignition voor alternatieve brandstoffen om duurzame mobiliteit en luchtkwaliteit te verbeteren.
Ultra-low emission gas turbine combustor
Opra Turbines en Dacolt ontwikkelen nieuwe turbine technologie en CFD-algoritmes voor de OP16 turbine, die efficiënt laagcalorisch gas omzet in elektriciteit.
Toroidal Propellers for Efficient and Sustainable Aviation
TorPropel aims to enhance aircraft propulsion by developing efficient, noise-reducing toroidal propellers using advanced composites and robotics, improving performance and sustainability in aviation.