POROus media: Life and dEath of their wAves and Flames
POROLEAF aims to explore the synergy between turbulent combustion and porous media to enhance understanding and design of cleaner, stable combustion processes.
Projectdetails
Introduction
Turbulent combustion of fossil fuel remains an important source of energy creation and propulsion worldwide, generating pollutant emissions endangering both human health and climate. A major factor inhibiting the mitigation of emissions pertains to combustion instabilities, i.e., large pressure oscillations resulting from a coupling between unsteady combustion and pressure waves.
Potential of Porous Inert Media
Carrying out the combustion within porous inert media holds great promise for lean combustion, owing notably to a strong heat recirculation effect occurring inside them. Despite the recognition that porous materials are natural wave absorbers, very little has been studied so far regarding the potential synergy between combustion instabilities and porous media.
Project Objectives
POROLEAF aims to pioneer the field of research residing at the intersection between the disciplines of waves, turbulent combustion, and porous media. A new set of scientific challenges will be introduced, related to:
- The complex flow physics involved in porous media combustion.
- The difficulty of accessing the physical fields within the pore matrix.
Methodology
To tackle these challenges, I will build on the skills developed during my thesis in the characterization of porous media microstructure, as well as recent advances in 3D printing technology for heat-resistant materials, to create porous samples allowing optical access. This will pioneer the way for a new set of state-of-the-art experiments.
Focus Areas
I aim to leverage decades of previous work in combustion instabilities and focus on the new behaviors introduced by porous media. In particular, the effects of:
- Turbulence
- Entropy
- Vaporization
- Flame dynamics
will need to be re-evaluated in light of porous media interactions.
Expected Outcomes
The improved knowledge of these principles will enable unprecedented understanding of the influence of porous media properties on the nonlinear flame response. This will directly assist in the design of cleaner and more stable combustion processes.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.942 |
Totale projectbegroting | € 1.499.942 |
Tijdlijn
Startdatum | 1-1-2024 |
Einddatum | 31-12-2028 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AEROSPATIALESpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Control of Hydrogen and Enriched-hydrogen Reacting flows with Water injection and Intensive Strain for ultra-low EmissionsThis research aims to stabilize hydrogen flames with ultra-low NOx emissions through intensive strain and water injection, enhancing clean energy generation and addressing global warming. | ERC Starting... | € 1.499.958 | 2023 | Details |
Taming Combustion Instabilities by Design PrinciplesTACOS aims to revolutionize gas turbine design by utilizing exceptional points to enhance combustion stability and fuel flexibility, leading to safer, low-emission energy and aviation solutions. | ERC Starting... | € 1.499.993 | 2023 | Details |
Hydrogen-Based Intrinsic-Flame-Instability-Controlled Clean and Efficient CombustionThe project aims to enhance combustion efficiency and stability of hydrogen-based fuels by analyzing intrinsic flame instabilities and developing a modeling framework for practical applications. | ERC Advanced... | € 2.498.727 | 2022 | Details |
Aluminum STEAM combustion for clean energyA-STEAM aims to advance understanding of aluminum-steam combustion dynamics through high-fidelity simulations and experiments, promoting zero-carbon metal fuels for energy applications. | ERC Advanced... | € 2.498.481 | 2024 | Details |
Flow-induced morphology modifications in porous multiscale systemsThis project aims to understand and predict flow transport and medium evolution in porous media with morphology modifications using numerical simulations, experiments, and theoretical modeling. | ERC Starting... | € 1.499.791 | 2025 | Details |
Control of Hydrogen and Enriched-hydrogen Reacting flows with Water injection and Intensive Strain for ultra-low Emissions
This research aims to stabilize hydrogen flames with ultra-low NOx emissions through intensive strain and water injection, enhancing clean energy generation and addressing global warming.
Taming Combustion Instabilities by Design Principles
TACOS aims to revolutionize gas turbine design by utilizing exceptional points to enhance combustion stability and fuel flexibility, leading to safer, low-emission energy and aviation solutions.
Hydrogen-Based Intrinsic-Flame-Instability-Controlled Clean and Efficient Combustion
The project aims to enhance combustion efficiency and stability of hydrogen-based fuels by analyzing intrinsic flame instabilities and developing a modeling framework for practical applications.
Aluminum STEAM combustion for clean energy
A-STEAM aims to advance understanding of aluminum-steam combustion dynamics through high-fidelity simulations and experiments, promoting zero-carbon metal fuels for energy applications.
Flow-induced morphology modifications in porous multiscale systems
This project aims to understand and predict flow transport and medium evolution in porous media with morphology modifications using numerical simulations, experiments, and theoretical modeling.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Haalbaarheid dynamisch verbrandingsmodel voor waterstofHet project onderzoekt de haalbaarheid van een turbulent verbrandingsmodel voor waterstof/aardgas-mengsels om ultra-lage NOx-emissies te realiseren en de verbrandingseigenschappen te simuleren. | Mkb-innovati... | € 20.000 | 2023 | Details |
Pilot oxyfuel verbranding voor branders van process fornuizen oor afvang van CO2Dit project ontwikkelt een veilige oxyfuel brander voor industriële processen met 100% zuurstof en verbrandingsgasrecycling, gericht op CO2-reductie en verbeterde warmteverdeling. | Demonstratie... | € 216.800 | 2024 | Details |
Gas-oppervlakte interactiesimulatie in industriële optica, waterstof en adsorptie van giftige gassenDit project onderzoekt de technische en economische haalbaarheid van gasafvang met poreuze materialen voor CO2 en andere gassen via simulaties en modellering, gericht op industriële toepassingen. | Mkb-innovati... | € 20.000 | 2023 | Details |
Combustion Pressure Sensor (CPS)Het project richt zich op het ontwikkelen van een nieuwe Combustion Pressure Sensor (CPS) om de efficiëntie van verbrandingsmotoren te verbeteren en de milieu-impact te verminderen. | Mkb-innovati... | € 199.500 | 2017 | Details |
Haalbaarheid dynamisch verbrandingsmodel voor waterstof
Het project onderzoekt de haalbaarheid van een turbulent verbrandingsmodel voor waterstof/aardgas-mengsels om ultra-lage NOx-emissies te realiseren en de verbrandingseigenschappen te simuleren.
Pilot oxyfuel verbranding voor branders van process fornuizen oor afvang van CO2
Dit project ontwikkelt een veilige oxyfuel brander voor industriële processen met 100% zuurstof en verbrandingsgasrecycling, gericht op CO2-reductie en verbeterde warmteverdeling.
Gas-oppervlakte interactiesimulatie in industriële optica, waterstof en adsorptie van giftige gassen
Dit project onderzoekt de technische en economische haalbaarheid van gasafvang met poreuze materialen voor CO2 en andere gassen via simulaties en modellering, gericht op industriële toepassingen.
Combustion Pressure Sensor (CPS)
Het project richt zich op het ontwikkelen van een nieuwe Combustion Pressure Sensor (CPS) om de efficiëntie van verbrandingsmotoren te verbeteren en de milieu-impact te verminderen.