Personalized and Subjective approaches to Natural Language Processing
PERSONAE aims to revolutionize NLP by developing personalizable language technologies that empower individuals to adapt subjective tasks like sentiment analysis and abusive language detection.
Projectdetails
Introduction
My project, PERSONAE, will make language technology (LT) accessible and valuable to everyone. I will revolutionize research in subjective tasks in NLP such as abusive language detection and sentiment and emotion analysis by developing a new field called personal NLP, yielding new datasets, tasks, and algorithms. This new research area will explore subjective tasks from the perspective of the individual as information receiver, making users active actors in the creation of LTs instead of mere recipients. This will allow for a more tailored, effective approach to NLP model design, resulting in better models overall.
Individual Perspectives
Each person has their own interests and preferences based on their background and experience. These factors impact their views of what makes them happy, angry, or depressed over time. Language technologies (LTs) can consider individual preferences. However, current research presumes a static view of subjectivity: that a single ground truth underlies subjective tasks such as abusive language detection, an assumption that lacks human variability and prevents universal access to LTs.
Current Limitations
Language-based AI such as virtual assistants is widely available. But despite significant scientific advances, most LT applications are inaccessible to individuals and their public's opinion has become increasingly negative. GPT-3's 2020 release boosted business-oriented applications such as copywriting and chatbots, yet few that let people improve their lives—for example, by controlling what they see on social media. This gap becomes more pronounced for subjective tasks.
Project Goals
I will design subjective LTs that can be adapted by individuals at will over time. Based on an ambitious meta approach able to generalize from existing, disconnected work, PERSONAE will rely on fully personalizable privacy-aware algorithms that can be used by anyone. It will reveal benefits of LT far beyond those of existing systems, paving the way for future applications.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.775 |
Totale projectbegroting | € 1.499.775 |
Tijdlijn
Startdatum | 1-9-2024 |
Einddatum | 31-8-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- UNIVERSITA COMMERCIALE LUIGI BOCCONIpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Next-Generation Natural Language GenerationThis project aims to enhance natural language generation by integrating neural models with symbolic representations for better control, adaptability, and reliable evaluation across various applications. | ERC Starting... | € 1.420.375 | 2022 | Details |
Natural Language Understanding for non-standard languages and dialectsDIALECT aims to enhance Natural Language Understanding by developing algorithms that integrate dialectal variation and reduce bias in data and labels for fairer, more accurate language models. | ERC Consolid... | € 1.997.815 | 2022 | Details |
DEep COgnition Learning for LAnguage GEnerationThis project aims to enhance NLP models by integrating machine learning, cognitive science, and structured memory to improve out-of-domain generalization and contextual understanding in language generation tasks. | ERC Consolid... | € 1.999.595 | 2023 | Details |
Artificial UserThis project aims to enhance human-computer interaction by developing a simulator that autonomously generates human-like behavior using computational rationality, improving evaluation methods and data generation. | ERC Advanced... | € 2.499.208 | 2024 | Details |
Narrative Archetypes for Artificial IntelligenceAI STORIES investigates how narrative archetypes in training data influence biases in AI outputs, aiming to develop a narratology of AI to enhance cultural diversity and inform stakeholders. | ERC Advanced... | € 2.500.000 | 2024 | Details |
Next-Generation Natural Language Generation
This project aims to enhance natural language generation by integrating neural models with symbolic representations for better control, adaptability, and reliable evaluation across various applications.
Natural Language Understanding for non-standard languages and dialects
DIALECT aims to enhance Natural Language Understanding by developing algorithms that integrate dialectal variation and reduce bias in data and labels for fairer, more accurate language models.
DEep COgnition Learning for LAnguage GEneration
This project aims to enhance NLP models by integrating machine learning, cognitive science, and structured memory to improve out-of-domain generalization and contextual understanding in language generation tasks.
Artificial User
This project aims to enhance human-computer interaction by developing a simulator that autonomously generates human-like behavior using computational rationality, improving evaluation methods and data generation.
Narrative Archetypes for Artificial Intelligence
AI STORIES investigates how narrative archetypes in training data influence biases in AI outputs, aiming to develop a narratology of AI to enhance cultural diversity and inform stakeholders.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Project HominisHet project richt zich op het ontwikkelen van een ethisch AI-systeem voor natuurlijke taalverwerking dat vooroordelen minimaliseert en technische, economische en regelgevingsrisico's beheert. | Mkb-innovati... | € 20.000 | 2022 | Details |
Haalbaarheidsonderzoek AI-driven “barks” generatorPU ontwikkelt een AI-gestuurde barks generator om automatisch thematische dialogen te creëren voor gamification producten, met als doel de spelerservaring te verbeteren en tijd te besparen. | Mkb-innovati... | € 20.000 | 2023 | Details |
Haalbaarheidsonderzoek naar AIPerLearn (AI-Powered Personalized Learning)STARK Learning onderzoekt de toepassing en training van AI-modellen om het ontwikkelen van gepersonaliseerde lesmaterialen te automatiseren en de kwaliteit en validatie te waarborgen. | Mkb-innovati... | € 20.000 | 2023 | Details |
Inzet van computational linguistics voor het vergaren van military intelligenceDit project onderzoekt de haalbaarheid van computational linguistics voor het vergaren van militaire inlichtingen ter verbetering van veiligheid. | Mkb-innovati... | € 20.000 | 2023 | Details |
EdionHet project ontwikkelt een geautomatiseerd systeem voor vraaggeneratie in de natuurkunde om docenten tijd te besparen en studenten een boeiendere leerervaring te bieden. | Mkb-innovati... | € 20.000 | 2023 | Details |
Project Hominis
Het project richt zich op het ontwikkelen van een ethisch AI-systeem voor natuurlijke taalverwerking dat vooroordelen minimaliseert en technische, economische en regelgevingsrisico's beheert.
Haalbaarheidsonderzoek AI-driven “barks” generator
PU ontwikkelt een AI-gestuurde barks generator om automatisch thematische dialogen te creëren voor gamification producten, met als doel de spelerservaring te verbeteren en tijd te besparen.
Haalbaarheidsonderzoek naar AIPerLearn (AI-Powered Personalized Learning)
STARK Learning onderzoekt de toepassing en training van AI-modellen om het ontwikkelen van gepersonaliseerde lesmaterialen te automatiseren en de kwaliteit en validatie te waarborgen.
Inzet van computational linguistics voor het vergaren van military intelligence
Dit project onderzoekt de haalbaarheid van computational linguistics voor het vergaren van militaire inlichtingen ter verbetering van veiligheid.
Edion
Het project ontwikkelt een geautomatiseerd systeem voor vraaggeneratie in de natuurkunde om docenten tijd te besparen en studenten een boeiendere leerervaring te bieden.