DEep COgnition Learning for LAnguage GEneration

This project aims to enhance NLP models by integrating machine learning, cognitive science, and structured memory to improve out-of-domain generalization and contextual understanding in language generation tasks.

Subsidie
€ 1.999.595
2023

Projectdetails

Introduction

In recent years, transformer-based deep learning models such as BERT or GPT-3 have led to impressive results in many natural language processing (NLP) tasks, exhibiting transfer and few-shot learning capabilities.

Limitations of Current Models

However, despite faring well in benchmarks, current deep learning models for NLP often fail badly in the wild. The main issues include:

  • Poor out-of-domain generalization
  • Inability to exploit contextual information
  • Poor calibration
  • Non-traceable memory

These limitations stem from their monolithic architectures, which are good for perception but unsuitable for tasks requiring higher-level cognition.

Project Goals

In this project, I attack these fundamental problems by bringing together tools and ideas from various fields:

  1. Machine Learning
  2. Sparse Modeling
  3. Information Theory
  4. Cognitive Science

This interdisciplinary approach will involve several key strategies:

Utility-Guided Controlled Generation

First, I will use uncertainty and quality estimates for utility-guided controlled generation. This will combine the control mechanism with the efficient encoding of contextual information and integration of multiple modalities.

Sparse and Structured Memory Models

Second, I will develop sparse and structured memory models, along with attention descriptive representations aimed at conscious processing.

Mathematical Models for Sparse Communication

Third, I will build mathematical models for sparse communication that reconcile discrete and continuous domains. These models will support end-to-end differentiability and enable a shared workspace where multiple modules and agents can communicate.

Application of Innovations

I will apply the innovations mentioned above to highly challenging language generation tasks, including:

  1. Machine translation
  2. Open dialogue
  3. Story generation

Collaboration and Impact

To reinforce interdisciplinarity and maximize technological impact, collaborations are planned with cognitive scientists and with a scale-up company in the crowd-sourcing translation industry.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.999.595
Totale projectbegroting€ 1.999.595

Tijdlijn

Startdatum1-8-2023
Einddatum31-7-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • INSTITUTO DE TELECOMUNICACOESpenvoerder
  • UNBABEL UNIPESSOAL, LDA

Land(en)

Portugal

Vergelijkbare projecten binnen European Research Council

ERC Starting...

Next-Generation Natural Language Generation

This project aims to enhance natural language generation by integrating neural models with symbolic representations for better control, adaptability, and reliable evaluation across various applications.

€ 1.420.375
ERC Starting...

Towards an Artificial Cognitive Science

This project aims to establish a new field of artificial cognitive science by applying cognitive psychology to enhance the learning and decision-making of advanced AI models.

€ 1.496.000
ERC Consolid...

Natural Language Understanding for non-standard languages and dialects

DIALECT aims to enhance Natural Language Understanding by developing algorithms that integrate dialectal variation and reduce bias in data and labels for fairer, more accurate language models.

€ 1.997.815
ERC Consolid...

Tensors and Neural Networks for Computational Creativity

This project aims to develop unsupervised language models using tensor constructs and advanced neural networks to enhance creativity in natural language generation.

€ 1.988.500
ERC Starting...

Controlling Large Language Models

Develop a framework to understand and control large language models, addressing biases and flaws to ensure safe and responsible AI adoption.

€ 1.500.000

Vergelijkbare projecten uit andere regelingen

Mkb-innovati...

Nederlandstalige GPT-2 aanvul AI-programmatuur

Deepdesk onderzoekt de haalbaarheid van het toepassen van GPT-2 voor contextafhankelijke tekstgeneratie in het Nederlands om de efficiëntie van correspondentie in contactcenters te verbeteren.

€ 20.000
Mkb-innovati...

Edion

Het project ontwikkelt een geautomatiseerd systeem voor vraaggeneratie in de natuurkunde om docenten tijd te besparen en studenten een boeiendere leerervaring te bieden.

€ 20.000
Mkb-innovati...

Haalbaarheidsonderzoek naar AIPerLearn (AI-Powered Personalized Learning)

STARK Learning onderzoekt de toepassing en training van AI-modellen om het ontwikkelen van gepersonaliseerde lesmaterialen te automatiseren en de kwaliteit en validatie te waarborgen.

€ 20.000
Mkb-innovati...

Intenties van tekst herkennen middels neurale netwerken

Maxwell Labs en Xomnia ontwikkelen een intelligente cognitieve engine voor natural language processing van Europese talen, gericht op verbeterde intent herkenning via neurale netwerken.

€ 199.960