Narrative Archetypes for Artificial Intelligence

AI STORIES investigates how narrative archetypes in training data influence biases in AI outputs, aiming to develop a narratology of AI to enhance cultural diversity and inform stakeholders.

Subsidie
€ 2.500.000
2024

Projectdetails

Introduction

AI STORIES is premised on the hypothesis that narrative archetypes fundamentally structure the output of contemporary artificial intelligence (AI). Large language models (LLMs) like GPT-4 are trained on vast quantities of text and images and generate new texts that are statistically similar to the training data. The scientific consensus acknowledges that LLMs replicate and sometimes exacerbate historical biases in their training data.

Deeper Bias in AI

AI STORIES proposes that LLMs are also affected by a deeper bias: that of the narrative structures in the social media posts, news stories, marketing blurbs, and novels the models are trained on. If this is the case, it will deeply impact how we use and apply AI, and how we think about bias and cultural diversity in AI models.

Currently available LLMs are largely trained on English-language texts, with a heavy weighting towards the United States. When they generate texts in non-English languages, they may succeed in producing grammatically correct texts, but if my hypothesis is correct, their deeper content will be fundamentally structured by the stories that dominate in the training data. This is a threat to cultural diversity that goes well beyond the purely linguistic.

Application of Humanities to AI Research

AI STORIES applies the humanities’ deep knowledge of narrative to AI research by developing and testing this hypothesis. We will apply narratology to understand the narrative structures of LLM’s training data.

Testing the Hypothesis

We test the hypothesis by:

  1. Training LLMs on specific kinds of narratives.
  2. Using prompt engineering.
  3. Conducting both qualitative and computational narratological analysis to reverse engineer the structures of AI-generated output.

Three comparative case studies will look specifically at Scandinavian, Australian, and either Indian or Nigerian stories.

Overall Objective

The overall objective is to develop a narratology of AI and to leverage the findings to ensure that policymakers, developers, educators, and other stakeholders can use our research to direct the future of AI.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.500.000
Totale projectbegroting€ 2.500.000

Tijdlijn

Startdatum1-8-2024
Einddatum31-7-2029
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • UNIVERSITETET I BERGENpenvoerder

Land(en)

Norway

Vergelijkbare projecten binnen European Research Council

ERC Consolid...

The Culture of Algorithmic Models: Advancing the Historical Epistemology of Artificial Intelligence

This project aims to develop a new epistemology and history of AI by tracing its origins in algorithmic modeling, impacting fields like digital humanities and AI ethics.

€ 1.927.573
ERC Starting...

Human collaboration with AI agents in national health governance: organizational circumstances under which data analysts and medical experts follow or deviate from AI.

This project aims to explore the socio-cultural dynamics of AI in health governance across six countries to develop a theory on ethical AI intervention and its impact on national health policies.

€ 1.499.961
ERC Starting...

Controlling Large Language Models

Develop a framework to understand and control large language models, addressing biases and flaws to ensure safe and responsible AI adoption.

€ 1.500.000
ERC Starting...

Next-Generation Natural Language Generation

This project aims to enhance natural language generation by integrating neural models with symbolic representations for better control, adaptability, and reliable evaluation across various applications.

€ 1.420.375
ERC Starting...

Personalized and Subjective approaches to Natural Language Processing

PERSONAE aims to revolutionize NLP by developing personalizable language technologies that empower individuals to adapt subjective tasks like sentiment analysis and abusive language detection.

€ 1.499.775

Vergelijkbare projecten uit andere regelingen

Mkb-innovati...

Project Hominis

Het project richt zich op het ontwikkelen van een ethisch AI-systeem voor natuurlijke taalverwerking dat vooroordelen minimaliseert en technische, economische en regelgevingsrisico's beheert.

€ 20.000
Mkb-innovati...

Haalbaarheidsonderzoek naar AIPerLearn (AI-Powered Personalized Learning)

STARK Learning onderzoekt de toepassing en training van AI-modellen om het ontwikkelen van gepersonaliseerde lesmaterialen te automatiseren en de kwaliteit en validatie te waarborgen.

€ 20.000
Mkb-innovati...

CINEMAI

CINEM_AI ontwikkelt een AI-film editor die automatisch films monteert op basis van geanalyseerde parameters, met als doel interessante en navolgbare narratieven te creëren.

€ 20.000
Mkb-innovati...

Bias Neutraliser

CorTexter ontwikkelt een deep learning software om onbedoelde vooroordelen in recruitmentteksten te herkennen en te neutraliseren, waardoor gelijke kansen voor werkzoekenden worden bevorderd.

€ 20.000
Mkb-innovati...

eXplainable AI in Personalized Mental Healthcare

Dit project ontwikkelt een innovatief AI-platform dat gebruikers betrekt bij het verbeteren van algoritmen via feedbackloops, gericht op transparantie en betrouwbaarheid in de geestelijke gezondheidszorg.

€ 350.000