Machine-Assisted Teaching for Open-Ended Problem Solving: Foundations and Applications
The TOPS project aims to develop AI-driven machine-assisted teaching algorithms to support individualized learning in open-ended problem-solving domains.
Projectdetails
Introduction
Computational thinking and problem-solving skills are essential for everyone in the 21st century, both for students to excel in STEM+Computing fields and for adults to thrive in the digital economy. Consequently, educators are putting increasing emphasis on pedagogical tasks in open-ended domains such as programming, conceptual puzzles, and virtual reality environments.
Challenges in Open-Ended Learning
When learning to solve such open-ended tasks by themselves, people often struggle. The difficulties are embodied in the very nature of tasks being open-ended:
- Underspecified: Multiple solutions of variable quality.
- Conceptual: No well-defined procedure.
- Sequential: A series of interdependent steps needed.
- Exploratory: Multiple pathways to reach a solution.
These struggling learners can benefit from individualized assistance, for instance, by receiving personalized curriculum across tasks or feedback within a task.
Limitations of Current Solutions
Unfortunately, human tutoring resources are scarce, and receiving individualized human assistance is rather a privilege. Technology empowered by artificial intelligence has the potential to tackle this scarcity challenge by providing scalable and automated machine-assisted teaching.
However, the state-of-the-art technology is limited: it is designed for well-defined procedural learning, but not for open-ended conceptual problem solving.
The TOPS Project
The TOPS project will develop next-generation technology for machine-assisted teaching in open-ended domains. We will design novel algorithms for assisting the learner by bridging reinforcement learning, imitation learning, cognitive science, and symbolic reasoning.
Theoretical Foundations and Applications
Our theoretical foundations will be based on a computational framework that models the learner as a reinforcement learning agent who gains mastery with the assistance of an automated teacher. In addition to providing solid foundations, we will demonstrate the performance of our techniques in a wide range of pedagogical applications.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.495.000 |
Totale projectbegroting | € 1.495.000 |
Tijdlijn
Startdatum | 1-4-2022 |
Einddatum | 31-3-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EVpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Artificial UserThis project aims to enhance human-computer interaction by developing a simulator that autonomously generates human-like behavior using computational rationality, improving evaluation methods and data generation. | ERC Advanced... | € 2.499.208 | 2024 | Details |
Challenges in Competitive Online OptimisationThis project aims to enhance decision-making under uncertainty by developing new online and learning-augmented algorithms, leveraging recent advancements in algorithm design and machine learning. | ERC Starting... | € 1.499.828 | 2025 | Details |
Towards an Artificial Cognitive ScienceThis project aims to establish a new field of artificial cognitive science by applying cognitive psychology to enhance the learning and decision-making of advanced AI models. | ERC Starting... | € 1.496.000 | 2024 | Details |
AI-based Learning for Physical SimulationThis project aims to enhance physical simulations by integrating machine learning with equation-based modeling for improved generalization and intelligibility, applicable across scientific disciplines and engineering. | ERC Starting... | € 1.315.000 | 2022 | Details |
Semi-Centralized Platforms for Steering Online Multi-Learner EnvironmentsThis project aims to develop semi-centralized platforms that combine decentralized learning flexibility with centralized optimization to enhance efficiency, fairness, and accountability in multi-learner environments. | ERC Starting... | € 1.316.544 | 2024 | Details |
Artificial User
This project aims to enhance human-computer interaction by developing a simulator that autonomously generates human-like behavior using computational rationality, improving evaluation methods and data generation.
Challenges in Competitive Online Optimisation
This project aims to enhance decision-making under uncertainty by developing new online and learning-augmented algorithms, leveraging recent advancements in algorithm design and machine learning.
Towards an Artificial Cognitive Science
This project aims to establish a new field of artificial cognitive science by applying cognitive psychology to enhance the learning and decision-making of advanced AI models.
AI-based Learning for Physical Simulation
This project aims to enhance physical simulations by integrating machine learning with equation-based modeling for improved generalization and intelligibility, applicable across scientific disciplines and engineering.
Semi-Centralized Platforms for Steering Online Multi-Learner Environments
This project aims to develop semi-centralized platforms that combine decentralized learning flexibility with centralized optimization to enhance efficiency, fairness, and accountability in multi-learner environments.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
CodeSkillz – Studievoortgang bijhouden met Learning AnalyticsCodeSkillz ontwikkelt een prototype voor een dynamisch docentendashboard dat voortgangsmonitoring van leerlingen mogelijk maakt, gericht op formatief leren en co-creatie met docenten. | Mkb-innovati... | € 15.936 | 2020 | Details |
Haalbaarheidsstudie AI-tutorDeze studie onderzoekt de inzet van AI in het basisonderwijs ter ondersteuning van docenten bij persoonlijke begeleiding van leerlingen. | Mkb-innovati... | € 20.000 | 2024 | Details |
deep Learning to Automatically Suggest OpencoursewareHet project ontwikkelt een deep learning systeem om open online lesmateriaal doorzoekbaar te maken en automatisch aan te bevelen, ter ondersteuning van docenten en leerlingen. | Mkb-innovati... | € 200.000 | 2017 | Details |
De AutonomaatHet project ontwikkelt de Autonomaat, een datagestuurd digitaal onderwijsinstrument dat de persoonlijke ontwikkeling van leerlingen inzichtelijk maakt en leerkrachten ondersteunt in het bieden van maatwerkonderwijs. | Mkb-innovati... | € 197.225 | 2022 | Details |
EdionHet project ontwikkelt een geautomatiseerd systeem voor vraaggeneratie in de natuurkunde om docenten tijd te besparen en studenten een boeiendere leerervaring te bieden. | Mkb-innovati... | € 20.000 | 2023 | Details |
CodeSkillz – Studievoortgang bijhouden met Learning Analytics
CodeSkillz ontwikkelt een prototype voor een dynamisch docentendashboard dat voortgangsmonitoring van leerlingen mogelijk maakt, gericht op formatief leren en co-creatie met docenten.
Haalbaarheidsstudie AI-tutor
Deze studie onderzoekt de inzet van AI in het basisonderwijs ter ondersteuning van docenten bij persoonlijke begeleiding van leerlingen.
deep Learning to Automatically Suggest Opencourseware
Het project ontwikkelt een deep learning systeem om open online lesmateriaal doorzoekbaar te maken en automatisch aan te bevelen, ter ondersteuning van docenten en leerlingen.
De Autonomaat
Het project ontwikkelt de Autonomaat, een datagestuurd digitaal onderwijsinstrument dat de persoonlijke ontwikkeling van leerlingen inzichtelijk maakt en leerkrachten ondersteunt in het bieden van maatwerkonderwijs.
Edion
Het project ontwikkelt een geautomatiseerd systeem voor vraaggeneratie in de natuurkunde om docenten tijd te besparen en studenten een boeiendere leerervaring te bieden.