Machine-Assisted Teaching for Open-Ended Problem Solving: Foundations and Applications

The TOPS project aims to develop AI-driven machine-assisted teaching algorithms to support individualized learning in open-ended problem-solving domains.

Subsidie
€ 1.495.000
2022

Projectdetails

Introduction

Computational thinking and problem-solving skills are essential for everyone in the 21st century, both for students to excel in STEM+Computing fields and for adults to thrive in the digital economy. Consequently, educators are putting increasing emphasis on pedagogical tasks in open-ended domains such as programming, conceptual puzzles, and virtual reality environments.

Challenges in Open-Ended Learning

When learning to solve such open-ended tasks by themselves, people often struggle. The difficulties are embodied in the very nature of tasks being open-ended:

  1. Underspecified: Multiple solutions of variable quality.
  2. Conceptual: No well-defined procedure.
  3. Sequential: A series of interdependent steps needed.
  4. Exploratory: Multiple pathways to reach a solution.

These struggling learners can benefit from individualized assistance, for instance, by receiving personalized curriculum across tasks or feedback within a task.

Limitations of Current Solutions

Unfortunately, human tutoring resources are scarce, and receiving individualized human assistance is rather a privilege. Technology empowered by artificial intelligence has the potential to tackle this scarcity challenge by providing scalable and automated machine-assisted teaching.

However, the state-of-the-art technology is limited: it is designed for well-defined procedural learning, but not for open-ended conceptual problem solving.

The TOPS Project

The TOPS project will develop next-generation technology for machine-assisted teaching in open-ended domains. We will design novel algorithms for assisting the learner by bridging reinforcement learning, imitation learning, cognitive science, and symbolic reasoning.

Theoretical Foundations and Applications

Our theoretical foundations will be based on a computational framework that models the learner as a reinforcement learning agent who gains mastery with the assistance of an automated teacher. In addition to providing solid foundations, we will demonstrate the performance of our techniques in a wide range of pedagogical applications.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.495.000
Totale projectbegroting€ 1.495.000

Tijdlijn

Startdatum1-4-2022
Einddatum31-3-2027
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EVpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC Advanced...

Artificial User

This project aims to enhance human-computer interaction by developing a simulator that autonomously generates human-like behavior using computational rationality, improving evaluation methods and data generation.

€ 2.499.208
ERC Starting...

Challenges in Competitive Online Optimisation

This project aims to enhance decision-making under uncertainty by developing new online and learning-augmented algorithms, leveraging recent advancements in algorithm design and machine learning.

€ 1.499.828
ERC Starting...

Towards an Artificial Cognitive Science

This project aims to establish a new field of artificial cognitive science by applying cognitive psychology to enhance the learning and decision-making of advanced AI models.

€ 1.496.000
ERC Starting...

AI-based Learning for Physical Simulation

This project aims to enhance physical simulations by integrating machine learning with equation-based modeling for improved generalization and intelligibility, applicable across scientific disciplines and engineering.

€ 1.315.000
ERC Starting...

Semi-Centralized Platforms for Steering Online Multi-Learner Environments

This project aims to develop semi-centralized platforms that combine decentralized learning flexibility with centralized optimization to enhance efficiency, fairness, and accountability in multi-learner environments.

€ 1.316.544

Vergelijkbare projecten uit andere regelingen

Mkb-innovati...

CodeSkillz – Studievoortgang bijhouden met Learning Analytics

CodeSkillz ontwikkelt een prototype voor een dynamisch docentendashboard dat voortgangsmonitoring van leerlingen mogelijk maakt, gericht op formatief leren en co-creatie met docenten.

€ 15.936
Mkb-innovati...

Haalbaarheidsstudie AI-tutor

Deze studie onderzoekt de inzet van AI in het basisonderwijs ter ondersteuning van docenten bij persoonlijke begeleiding van leerlingen.

€ 20.000
Mkb-innovati...

deep Learning to Automatically Suggest Opencourseware

Het project ontwikkelt een deep learning systeem om open online lesmateriaal doorzoekbaar te maken en automatisch aan te bevelen, ter ondersteuning van docenten en leerlingen.

€ 200.000
Mkb-innovati...

De Autonomaat

Het project ontwikkelt de Autonomaat, een datagestuurd digitaal onderwijsinstrument dat de persoonlijke ontwikkeling van leerlingen inzichtelijk maakt en leerkrachten ondersteunt in het bieden van maatwerkonderwijs.

€ 197.225
Mkb-innovati...

Edion

Het project ontwikkelt een geautomatiseerd systeem voor vraaggeneratie in de natuurkunde om docenten tijd te besparen en studenten een boeiendere leerervaring te bieden.

€ 20.000