Semi-Centralized Platforms for Steering Online Multi-Learner Environments

This project aims to develop semi-centralized platforms that combine decentralized learning flexibility with centralized optimization to enhance efficiency, fairness, and accountability in multi-learner environments.

Subsidie
€ 1.316.544
2024

Projectdetails

Introduction

In scenarios like online advertising markets and financial exchanges, autonomous, self-interested learning agents engage in strategic interactions via a shared platform. Platforms typically opt for a passive role, providing the shared infrastructure necessary for the operation of the multi-learner environment, while keeping learning procedures decentralized.

Centralized vs Decentralized Systems

Fully centralized systems can potentially yield superior outcomes by optimizing shared objectives like social welfare, but they are seldom chosen.

Project Goal

The goal of this project is to bridge the gap between these two extremes by establishing the theoretical foundations of semi-centralized platforms (SCP). SCPs aim to combine the best attributes of both centralized and decentralized systems, enabling next-generation platforms to operate efficiently at scale with the flexibility of decentralized learning, while also being able to steer learning agents towards desirable objectives.

Research Approach

Using tools from online learning and computational game theory, we will develop innovative techniques to determine when and how platforms should actively influence the actions of learning agents. In this endeavor, we will:

  1. Develop a better understanding of the learning dynamics of traditional platforms.
  2. Explore methods to overcome well-known computational challenges that hinder the convergence of multi-learner systems towards shared objectives.
  3. Extend fundamental game-theoretic models to realistic settings.

Expected Outcomes

This research will pave the way for practical applications on real-world platforms and address pressing concerns related to fairness and accountability in their outcomes, which are expected to become even more significant as machine-learning algorithms gain wider adoption.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.316.544
Totale projectbegroting€ 1.316.544

Tijdlijn

Startdatum1-10-2024
Einddatum30-9-2029
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • UNIVERSITA COMMERCIALE LUIGI BOCCONIpenvoerder

Land(en)

Italy

Vergelijkbare projecten binnen European Research Council

ERC Synergy ...

On intelligenCE And Networks

OCEAN aims to develop decentralized machine learning frameworks for incentive-driven agents, enhancing data handling and decision-making in competitive environments while addressing privacy and efficiency issues.

€ 7.762.668
ERC Consolid...

Foundations for Antitrust and Policy on Digital Platforms

This project analyzes the monopolistic behaviors of online marketplaces, evaluating their impact on competition and proposing policy solutions to mitigate consumer harm and unintended consequences.

€ 1.191.078
ERC Starting...

Society-Aware Machine Learning: The paradigm shift demanded by society to trust machine learning.

The project aims to develop society-aware machine learning algorithms through collaborative design, balancing the interests of owners, consumers, and regulators to foster trust and ethical use.

€ 1.499.845
ERC Starting...

Challenges in Competitive Online Optimisation

This project aims to enhance decision-making under uncertainty by developing new online and learning-augmented algorithms, leveraging recent advancements in algorithm design and machine learning.

€ 1.499.828
ERC Starting...

Responsible Link-Recommendations in Dynamic Environments

This project aims to create computational models to assess and redesign link-recommendation algorithms for online social networks to promote cooperation and mitigate misinformation.

€ 1.500.000

Vergelijkbare projecten uit andere regelingen

Mkb-innovati...

Adaptief Pedagogisch Digitaal Interactief Leersysteem

Het project ontwikkelt een adaptief digitaal platform voor gepersonaliseerd leren, dat zich aanpast aan de leerstijl van studenten en interactief onderwijs bevordert.

€ 200.000
Mkb-innovati...

Self-service media-campagne platform

Het project ontwikkelt een gebruiksvriendelijk self-service platform voor dynamische Rich Media advertenties, gericht op gepersonaliseerde campagnes via big data en in-app metingen.

€ 164.400
Mkb-innovati...

Haalbaarheidsonderzoek Predictive Personalized Learning Module

Mr. Chadd ontwikkelt een online platform dat leerlingen en coaches matcht, gericht op het verbeteren van gebruikersbinding en leereffect door gepersonaliseerde vervolgvragen en kennisinventarisatie.

€ 20.000
Mkb-innovati...

Haalbaarheidsonderzoek naar AIPerLearn (AI-Powered Personalized Learning)

STARK Learning onderzoekt de toepassing en training van AI-modellen om het ontwikkelen van gepersonaliseerde lesmaterialen te automatiseren en de kwaliteit en validatie te waarborgen.

€ 20.000