Deep Brain Neuromodulation using Temporal Interference Magnetic Stimulation
Develop a non-invasive tool using temporal interference magnetic stimulation for precise modulation of neural activity in the brain, aiming to improve treatment options for brain disorders.
Projectdetails
Introduction
Five out of ten diseases leading to long-term disability are related to the brain, including stroke, depression, or dementia. Despite tremendous progress in neurotechnology, there is still no effective treatment option available for many brain-related disorders.
Current Approaches and Limitations
A very promising approach to treat brain disorders uses transcranial electric or magnetic stimulation (TES/TMS) to directly influence brain activity related to specific symptoms. However, these methods are limited in their:
- Spatial resolution
- Specificity
- Ability to reach deep brain areas
Project Aim
The aim of the proposed project is to develop a technical and experimental proof-of-concept for a new non-invasive tool that allows for millimeter- and millisecond-precise modulation of neural activity in superficial and deep areas of the human brain.
Methodology
Capitalizing on temporal interference effects, the device will apply high carrier frequency magnetic fields through a pair of coils. By modulating their relative phase, the combined fields will induce a locally amplitude-modulated electric field in the brain.
Mechanism of Action
As neural tissue is insensitive to unmodulated high-frequency fields (>1kHz), but responds to low-frequency amplitude-modulated fields, only brain regions will be stimulated where the combined field is amplitude-modulated.
Goals
Building on the resulting versatility of stimulation frequencies and waveforms, we aim at providing proof for:
- Cell-type specificity of such temporal interference magnetic stimulation (TIMS).
- The feasibility of targeting neural activity at millisecond-to-millisecond precision.
Expected Impact
The availability of such a device offering high spatial resolution, depth selectivity, steerability, as well as closed-loop compatibility and cell-type specificity would mark a major breakthrough for clinical neuroscience.
Collaboration and Translation
Together with two partners from industry and a partner for technology transfer, we strive for fast translation of expected research results into innovative products.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-11-2022 |
Einddatum | 30-4-2024 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- CHARITE - UNIVERSITAETSMEDIZIN BERLINpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MODular and EXpandable multi-locus Transcranial Magnetic StimulationDevelop an affordable, automated multi-locus TMS system to enhance brain stimulation efficiency and efficacy, improving treatment outcomes for various neurological disorders. | ERC Proof of... | € 150.000 | 2024 | Details |
Bidirectional remote deep brain control with magnetic anisotropic nanomaterialsBRAINMASTER aims to develop a scalable, wireless neuromodulation system using magnetic nanodiscs for deep brain therapy and imaging, enhancing cognitive training and treatment for neurological disorders. | ERC Starting... | € 1.500.000 | 2024 | Details |
Bidirectional Brain/Neural-Computer Interaction for Restoration of Mental HealthThis project aims to develop a portable neuromodulation system using quantum sensors and magnetic stimulation to precisely target brain oscillations for treating mental health disorders. | ERC Consolid... | € 1.999.875 | 2025 | Details |
Epilepsy Treatment Using Neuromodulation by Non-Invasive Temporal Interference StimulationThe EMUNITI project aims to develop a non-invasive, personalized brain stimulation device using temporal interference to diagnose and treat epilepsy, enhancing patient care and outcomes. | ERC Consolid... | € 1.996.925 | 2023 | Details |
Desynchronizing weak cortical fields during deep brain stimulationDECODE aims to enhance deep brain stimulation for Parkinson's by investigating weak electric fields' role in desynchronizing neural activity to improve motor control and reduce side effects. | ERC Starting... | € 1.498.914 | 2024 | Details |
MODular and EXpandable multi-locus Transcranial Magnetic Stimulation
Develop an affordable, automated multi-locus TMS system to enhance brain stimulation efficiency and efficacy, improving treatment outcomes for various neurological disorders.
Bidirectional remote deep brain control with magnetic anisotropic nanomaterials
BRAINMASTER aims to develop a scalable, wireless neuromodulation system using magnetic nanodiscs for deep brain therapy and imaging, enhancing cognitive training and treatment for neurological disorders.
Bidirectional Brain/Neural-Computer Interaction for Restoration of Mental Health
This project aims to develop a portable neuromodulation system using quantum sensors and magnetic stimulation to precisely target brain oscillations for treating mental health disorders.
Epilepsy Treatment Using Neuromodulation by Non-Invasive Temporal Interference Stimulation
The EMUNITI project aims to develop a non-invasive, personalized brain stimulation device using temporal interference to diagnose and treat epilepsy, enhancing patient care and outcomes.
Desynchronizing weak cortical fields during deep brain stimulation
DECODE aims to enhance deep brain stimulation for Parkinson's by investigating weak electric fields' role in desynchronizing neural activity to improve motor control and reduce side effects.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MagnetoElectric and Ultrasonic Technology for Advanced BRAIN modulationMETA-BRAIN aims to develop non-invasive, precise control of brain activity using magnetoelectric nanoarchitectures and ultrasonic technologies, enhancing treatment for neurological disorders. | EIC Pathfinder | € 2.987.655 | 2024 | Details |
Closed-loop Individualized image-guided Transcranial Ultrasonic StimulationThe project aims to develop a neuronavigated transcranial ultrasound stimulation (TUS) system for precise, non-invasive modulation of deep brain structures to treat neurological and psychiatric disorders. | EIC Pathfinder | € 3.799.402 | 2022 | Details |
Wireless deep BRAIN STimulation thrOugh engineeRed Multifunctinal nanomaterialsBRAINSTORM aims to develop a scalable wireless neuromodulation technology using smart magnetic nanomaterials to selectively control deep brain neurons for therapeutic applications in Fragile X syndrome. | EIC Pathfinder | € 3.083.850 | 2023 | Details |
A synaptic mechanogenetic technology to repair brain connectivityDeveloping a mechanogenetic technology using magnetic nanoparticles to non-invasively regulate neural circuits for treating treatment-resistant brain disorders like stroke and epilepsy. | EIC Pathfinder | € 3.543.967 | 2023 | Details |
Brain Interchange ONE SR—the implantable neuromodulation technology for stroke rehabilitationCorTec aims to develop innovative implantable technology for stroke rehabilitation, enabling new therapies and devices while targeting market approval and $250M in sales by 2030. | EIC Accelerator | € 2.500.000 | 2022 | Details |
MagnetoElectric and Ultrasonic Technology for Advanced BRAIN modulation
META-BRAIN aims to develop non-invasive, precise control of brain activity using magnetoelectric nanoarchitectures and ultrasonic technologies, enhancing treatment for neurological disorders.
Closed-loop Individualized image-guided Transcranial Ultrasonic Stimulation
The project aims to develop a neuronavigated transcranial ultrasound stimulation (TUS) system for precise, non-invasive modulation of deep brain structures to treat neurological and psychiatric disorders.
Wireless deep BRAIN STimulation thrOugh engineeRed Multifunctinal nanomaterials
BRAINSTORM aims to develop a scalable wireless neuromodulation technology using smart magnetic nanomaterials to selectively control deep brain neurons for therapeutic applications in Fragile X syndrome.
A synaptic mechanogenetic technology to repair brain connectivity
Developing a mechanogenetic technology using magnetic nanoparticles to non-invasively regulate neural circuits for treating treatment-resistant brain disorders like stroke and epilepsy.
Brain Interchange ONE SR—the implantable neuromodulation technology for stroke rehabilitation
CorTec aims to develop innovative implantable technology for stroke rehabilitation, enabling new therapies and devices while targeting market approval and $250M in sales by 2030.