Epilepsy Treatment Using Neuromodulation by Non-Invasive Temporal Interference Stimulation
The EMUNITI project aims to develop a non-invasive, personalized brain stimulation device using temporal interference to diagnose and treat epilepsy, enhancing patient care and outcomes.
Projectdetails
Introduction
Epilepsy is a brain disorder characterized by sporadic debilitating seizures and declines in mental health. Available therapies suffer from drawbacks and are not suitable for all patients. The medical needs in epilepsy encapsulate those for clinically managing brain health in general, i.e., the need for precision, personalized, non-systemic, and safer therapies.
Innovative Solutions
Potential innovative solutions are available from advances in technology but will require multidisciplinary teams that bridge between engineering and clinical neurology.
Project Objective
The main objective of the EMUNITI project is to develop a breakthrough, non-invasive, personalized brain stimulation device for epilepsy patients, which serves two purposes:
- As a diagnostic for seizure localization that can guide subsequent surgical resection.
- As a therapy, akin to immunizing the patient against seizures.
Device Technology
The device is based on temporal interference (TI) of electrical signals delivered from positions around the scalp. The project will be led by Adam Williamson, who is a former recipient of ERC Starting and Proof-of-Concept grants and has IP for the technology. His lab is at the interface between state-of-the-art engineering and neurology and is based in a major European center for clinical research on epilepsy in Marseille, France.
Pilot Study
His lab has already demonstrated in a pilot study of epilepsy patients that TI can block seizure-provoking brain activity.
Work Packages
The project includes three work packages (WPs):
- WP1 focuses on optimizing TI stimulation at the engineering level and establishing a novel form of TI in multipolar TI (mTI).
- WP2 will evaluate mTI in epilepsy patients for seizure localization and for therapeutic intervention with the potential to create brain seizure immunity through repeated mTI.
- WP3 administers the project and delivers the main outcome: a clinical prototype with closed-loop stimulation combining mTI and intelligent software.
Anticipated Outcomes
The successful outcome is anticipated to lead to other applications for TI in brain health.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.996.925 |
Totale projectbegroting | € 1.996.925 |
Tijdlijn
Startdatum | 1-12-2023 |
Einddatum | 30-11-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- FAKULTNI NEMOCNICE U SV ANNY V BRNEpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Deep Brain Neuromodulation using Temporal Interference Magnetic StimulationDevelop a non-invasive tool using temporal interference magnetic stimulation for precise modulation of neural activity in the brain, aiming to improve treatment options for brain disorders. | ERC Proof of... | € 150.000 | 2022 | Details |
Minimally invasive and closed-loop ultrasound neuromodulation and recording for the treatment of focal epilepsyThis project aims to develop a minimally invasive, closed-loop ultrasound neuromodulation system for treating refractory epilepsy, optimizing protocols through a comprehensive computational framework. | ERC Starting... | € 1.499.575 | 2025 | Details |
MODular and EXpandable multi-locus Transcranial Magnetic StimulationDevelop an affordable, automated multi-locus TMS system to enhance brain stimulation efficiency and efficacy, improving treatment outcomes for various neurological disorders. | ERC Proof of... | € 150.000 | 2024 | Details |
NEurological MEchanismS of Injury, and Sleep-like cellular dynamicsNEMESIS aims to restore normal brain function in focal disorders through circuit-based stimulation and modeling of network abnormalities to improve patient outcomes. | ERC Synergy ... | € 9.927.253 | 2023 | Details |
Induction of NEuromuscular Plasticity for natural motor rehabilitaTIONINcEPTION aims to enhance neurorehabilitation by optimizing stimulation protocols through real-time estimation of neural connectivity from EMG signals, promoting recovery in stroke and cancer survivors. | ERC Consolid... | € 1.999.533 | 2022 | Details |
Deep Brain Neuromodulation using Temporal Interference Magnetic Stimulation
Develop a non-invasive tool using temporal interference magnetic stimulation for precise modulation of neural activity in the brain, aiming to improve treatment options for brain disorders.
Minimally invasive and closed-loop ultrasound neuromodulation and recording for the treatment of focal epilepsy
This project aims to develop a minimally invasive, closed-loop ultrasound neuromodulation system for treating refractory epilepsy, optimizing protocols through a comprehensive computational framework.
MODular and EXpandable multi-locus Transcranial Magnetic Stimulation
Develop an affordable, automated multi-locus TMS system to enhance brain stimulation efficiency and efficacy, improving treatment outcomes for various neurological disorders.
NEurological MEchanismS of Injury, and Sleep-like cellular dynamics
NEMESIS aims to restore normal brain function in focal disorders through circuit-based stimulation and modeling of network abnormalities to improve patient outcomes.
Induction of NEuromuscular Plasticity for natural motor rehabilitaTION
INcEPTION aims to enhance neurorehabilitation by optimizing stimulation protocols through real-time estimation of neural connectivity from EMG signals, promoting recovery in stroke and cancer survivors.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Supporting Cognitive Functions in epileptic patients using transcranial current stimulationHet project ontwikkelt een draagbare TCS-technologie om cognitieve functies bij epileptische patiënten te ondersteunen en achteruitgang te voorkomen. | Mkb-innovati... | € 20.000 | 2022 | Details |
AEGEUS - A Novel EEG Ultrasound Device for Functional Brain Imaging and NeurostimulationDevelop a novel wearable device combining ultrasound imaging and EEG for enhanced diagnosis and treatment of neurological disorders, aiming for improved patient outcomes and research advancements. | EIC Pathfinder | € 2.998.988 | 2023 | Details |
SEIZE.SENSEHet project ontwikkelt een innovatief draagbaar apparaat voor realtime epilepsiedetectie, gericht op het verbeteren van patiëntenzorg en veiligheid. | Mkb-innovati... | € 117.810 | 2021 | Details |
Brain Interchange ONE SR—the implantable neuromodulation technology for stroke rehabilitationCorTec aims to develop innovative implantable technology for stroke rehabilitation, enabling new therapies and devices while targeting market approval and $250M in sales by 2030. | EIC Accelerator | € 2.500.000 | 2022 | Details |
MagnetoElectric and Ultrasonic Technology for Advanced BRAIN modulationMETA-BRAIN aims to develop non-invasive, precise control of brain activity using magnetoelectric nanoarchitectures and ultrasonic technologies, enhancing treatment for neurological disorders. | EIC Pathfinder | € 2.987.655 | 2024 | Details |
Supporting Cognitive Functions in epileptic patients using transcranial current stimulation
Het project ontwikkelt een draagbare TCS-technologie om cognitieve functies bij epileptische patiënten te ondersteunen en achteruitgang te voorkomen.
AEGEUS - A Novel EEG Ultrasound Device for Functional Brain Imaging and Neurostimulation
Develop a novel wearable device combining ultrasound imaging and EEG for enhanced diagnosis and treatment of neurological disorders, aiming for improved patient outcomes and research advancements.
SEIZE.SENSE
Het project ontwikkelt een innovatief draagbaar apparaat voor realtime epilepsiedetectie, gericht op het verbeteren van patiëntenzorg en veiligheid.
Brain Interchange ONE SR—the implantable neuromodulation technology for stroke rehabilitation
CorTec aims to develop innovative implantable technology for stroke rehabilitation, enabling new therapies and devices while targeting market approval and $250M in sales by 2030.
MagnetoElectric and Ultrasonic Technology for Advanced BRAIN modulation
META-BRAIN aims to develop non-invasive, precise control of brain activity using magnetoelectric nanoarchitectures and ultrasonic technologies, enhancing treatment for neurological disorders.