Bidirectional Brain/Neural-Computer Interaction for Restoration of Mental Health
This project aims to develop a portable neuromodulation system using quantum sensors and magnetic stimulation to precisely target brain oscillations for treating mental health disorders.
Projectdetails
Introduction
More than 1 billion people worldwide suffer from compromised mental health due to a brain disorder, such as depression, addiction, obsessive-compulsive disorder (OCD), or dementia. While already accounting for 19% of all years lived with disability, the relative share of these disorders is further increasing. Currently, due to the complexity of the human mind and brain, effective and side effect-free treatment options are lacking.
Need for Effective Treatments
To establish such options would not only require identifying the underlying neural substrates of clinical symptoms, but also effective means to directly modulate them.
Challenges in Neuroimaging
While advanced neuroimaging could link specific clinical symptoms to the metabolic activity of cortical and subcortical networks or neural circuits, it is unclear how this metabolic activity translates to the continuously evolving dynamics of widespread brain oscillatory activity.
Potential Solutions
A possible way to identify and target such oscillatory brain states would be the use of millimeter-precise and brain state-dependent neuromodulation, e.g., using electric or magnetic fields. However, this could not be established yet because reliable and accurate assessment of brain oscillations is impeded by stimulation artifacts.
Limitations of Current Tools
Moreover, there are no stimulation tools available that provide sufficient focality and steerability to target dynamic brain states at multiple locations with millisecond precision.
Proposed Approach
Building on our previous work, we will overcome these limitations and establish a new approach that combines quantum sensors offering unprecedented accuracy with closed-loop temporal interference magnetic stimulation to target cortical and subcortical areas at millimeter- and millisecond precision.
Validation and Implementation
The system will be validated in persons diagnosed with depression, OCD, addiction, and dementia. Finally, the paradigm will be implemented in a portable system to foster fast adoption in clinical environments.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.999.875 |
Totale projectbegroting | € 1.999.875 |
Tijdlijn
Startdatum | 1-1-2025 |
Einddatum | 31-12-2029 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- CHARITE - UNIVERSITAETSMEDIZIN BERLINpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Deep Brain Neuromodulation using Temporal Interference Magnetic StimulationDevelop a non-invasive tool using temporal interference magnetic stimulation for precise modulation of neural activity in the brain, aiming to improve treatment options for brain disorders. | ERC Proof of... | € 150.000 | 2022 | Details |
Bidirectional remote deep brain control with magnetic anisotropic nanomaterialsBRAINMASTER aims to develop a scalable, wireless neuromodulation system using magnetic nanodiscs for deep brain therapy and imaging, enhancing cognitive training and treatment for neurological disorders. | ERC Starting... | € 1.500.000 | 2024 | Details |
Neuroprosthetic Modulation of Large-Scale Brain Networks for Treating Memory DisordersThis project aims to develop a neuromodulation framework using a neuroprosthesis to enhance learning and memory by manipulating neural oscillations in the hippocampus-prefrontal cortex circuit. | ERC Starting... | € 1.499.625 | 2022 | Details |
60-Hz light entrainment to unlock mental health conditionsThis project aims to develop a non-invasive light-based therapy to enhance cognitive function by targeting the perineuronal net in mice, with potential applications for anxiety and PTSD treatment. | ERC Proof of... | € 150.000 | 2024 | Details |
measuriNg nEURal dynamics with label-free OpticaL multI-DomAin RecordingsThis project aims to innovate label-free optical methods for monitoring neural dynamics in the brain, enhancing understanding and treatment of brain diseases without exogenous reporters. | ERC Starting... | € 1.634.825 | 2025 | Details |
Deep Brain Neuromodulation using Temporal Interference Magnetic Stimulation
Develop a non-invasive tool using temporal interference magnetic stimulation for precise modulation of neural activity in the brain, aiming to improve treatment options for brain disorders.
Bidirectional remote deep brain control with magnetic anisotropic nanomaterials
BRAINMASTER aims to develop a scalable, wireless neuromodulation system using magnetic nanodiscs for deep brain therapy and imaging, enhancing cognitive training and treatment for neurological disorders.
Neuroprosthetic Modulation of Large-Scale Brain Networks for Treating Memory Disorders
This project aims to develop a neuromodulation framework using a neuroprosthesis to enhance learning and memory by manipulating neural oscillations in the hippocampus-prefrontal cortex circuit.
60-Hz light entrainment to unlock mental health conditions
This project aims to develop a non-invasive light-based therapy to enhance cognitive function by targeting the perineuronal net in mice, with potential applications for anxiety and PTSD treatment.
measuriNg nEURal dynamics with label-free OpticaL multI-DomAin Recordings
This project aims to innovate label-free optical methods for monitoring neural dynamics in the brain, enhancing understanding and treatment of brain diseases without exogenous reporters.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MagnetoElectric and Ultrasonic Technology for Advanced BRAIN modulationMETA-BRAIN aims to develop non-invasive, precise control of brain activity using magnetoelectric nanoarchitectures and ultrasonic technologies, enhancing treatment for neurological disorders. | EIC Pathfinder | € 2.987.655 | 2024 | Details |
A synaptic mechanogenetic technology to repair brain connectivityDeveloping a mechanogenetic technology using magnetic nanoparticles to non-invasively regulate neural circuits for treating treatment-resistant brain disorders like stroke and epilepsy. | EIC Pathfinder | € 3.543.967 | 2023 | Details |
Distributed and federated cross-modality actuation through advanced nanomaterials and neuromorphic learningCROSSBRAIN aims to revolutionize brain condition treatment using implantable microbots for real-time, adaptive neuromodulation and sensing in rodent models of Parkinson's Disease and Epilepsy. | EIC Pathfinder | € 4.034.074 | 2022 | Details |
Brain Interchange ONE SR—the implantable neuromodulation technology for stroke rehabilitationCorTec aims to develop innovative implantable technology for stroke rehabilitation, enabling new therapies and devices while targeting market approval and $250M in sales by 2030. | EIC Accelerator | € 2.500.000 | 2022 | Details |
Opto-Electronic Neural Connectoid Model Implemented for Neurodegenerative DiseaseThe project aims to develop a novel human brain-organoid model, called connectoids, to replace animal testing for Parkinson's disease, enhancing therapy monitoring and reducing societal burdens. | EIC Pathfinder | € 2.992.203 | 2022 | Details |
MagnetoElectric and Ultrasonic Technology for Advanced BRAIN modulation
META-BRAIN aims to develop non-invasive, precise control of brain activity using magnetoelectric nanoarchitectures and ultrasonic technologies, enhancing treatment for neurological disorders.
A synaptic mechanogenetic technology to repair brain connectivity
Developing a mechanogenetic technology using magnetic nanoparticles to non-invasively regulate neural circuits for treating treatment-resistant brain disorders like stroke and epilepsy.
Distributed and federated cross-modality actuation through advanced nanomaterials and neuromorphic learning
CROSSBRAIN aims to revolutionize brain condition treatment using implantable microbots for real-time, adaptive neuromodulation and sensing in rodent models of Parkinson's Disease and Epilepsy.
Brain Interchange ONE SR—the implantable neuromodulation technology for stroke rehabilitation
CorTec aims to develop innovative implantable technology for stroke rehabilitation, enabling new therapies and devices while targeting market approval and $250M in sales by 2030.
Opto-Electronic Neural Connectoid Model Implemented for Neurodegenerative Disease
The project aims to develop a novel human brain-organoid model, called connectoids, to replace animal testing for Parkinson's disease, enhancing therapy monitoring and reducing societal burdens.