Automated Synthesis of Certifiable Control Software for Autonomous Vehicles
CertiCar aims to develop a reliable, formally correct advanced collision avoidance system to enhance safety and reduce testing time for autonomous vehicle control software.
Projectdetails
Introduction
Autonomous driving is a dominant technological theme of the 21st century, with vehicles from various car manufacturers equipped with different levels of autonomy. However, the implementation of safe and reliable control software remains a critical challenge for car manufacturers before fully autonomous vehicles become a reality.
Challenges in Current Autonomous Vehicle Software
The current lack of reliability in autonomous vehicle software is mainly attributed to the absence of formal correctness. Design requirements are not expressed in a formal language, leading to ambiguity and false implementations.
Human Factors and Testing Limitations
Furthermore, human factors from engineers to developers increase the likelihood of errors. Additionally, testing scenarios are limited, leaving many edge cases untested. Immature control software leading to accidents undermines public trust in autonomous vehicles and impedes further development.
Proposed Solution
We propose leveraging our ongoing ERC project AutoCPS research to create robust, reliable, and formally correct automotive control software. CertiCar proposes a software development framework that automates control software generation and guarantees its robustness and reliability.
Importance of Advanced Collision Avoidance Systems
A reliable advanced collision avoidance system (ACAS) is a fundamental requirement for future autonomous vehicles, significantly reducing the number of accidents, injuries, and fatalities.
Project Goals
CertiCar's PoC project aims to provide a correct-by-design ACAS with guaranteed correctness, reducing testing time by several orders of magnitude for car companies. This represents an initial step toward a complete software stack for a certifiable autonomous car.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-2-2024 |
Einddatum | 31-7-2025 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Automated Synthesis of Stochastic Cyber-Physical Systems: A Robust ApproachThis project aims to revolutionize the design of cyber-physical systems by automating robust control software synthesis from high-level requirements, enhancing reliability and reducing costs in safety-critical applications. | ERC Consolid... | € 1.993.756 | 2023 | Details |
Autonomous Robots with Common SenseThis project aims to develop an 'Artificial Physical Awareness' autopilot system for autonomous robots, enabling them to operate safely and effectively despite failures by understanding their limitations. | ERC Consolid... | € 1.996.040 | 2024 | Details |
SUrrogate measures for SAFE autonomous and connected mobilitySUperSAFE aims to develop a proactive safety evaluation method for the interaction between conventional and connected automated vehicles to enhance traffic safety and support European zero-fatality goals. | ERC Starting... | € 1.500.000 | 2023 | Details |
LEARN: Learning Efficient Automated Reasoning on the NetLEARN automates reasoning and proof strategies for software certification, providing a web-based framework to enhance safety and security in complex computer systems, reducing costs from software errors. | ERC Proof of... | € 150.000 | 2025 | Details |
Emerging cooperative autonomous systems: Information for control and estimationMINERVA aims to revolutionize cooperative autonomous systems by developing a novel framework for real-time control and communication in complex environments, enhancing industrial automation. | ERC Consolid... | € 1.999.686 | 2022 | Details |
Automated Synthesis of Stochastic Cyber-Physical Systems: A Robust Approach
This project aims to revolutionize the design of cyber-physical systems by automating robust control software synthesis from high-level requirements, enhancing reliability and reducing costs in safety-critical applications.
Autonomous Robots with Common Sense
This project aims to develop an 'Artificial Physical Awareness' autopilot system for autonomous robots, enabling them to operate safely and effectively despite failures by understanding their limitations.
SUrrogate measures for SAFE autonomous and connected mobility
SUperSAFE aims to develop a proactive safety evaluation method for the interaction between conventional and connected automated vehicles to enhance traffic safety and support European zero-fatality goals.
LEARN: Learning Efficient Automated Reasoning on the Net
LEARN automates reasoning and proof strategies for software certification, providing a web-based framework to enhance safety and security in complex computer systems, reducing costs from software errors.
Emerging cooperative autonomous systems: Information for control and estimation
MINERVA aims to revolutionize cooperative autonomous systems by developing a novel framework for real-time control and communication in complex environments, enhancing industrial automation.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Fail-operational safety – making autonomous vehicles a realityChassis Autonomy aims to finalize a fail-operational steer-by-wire system for fully autonomous vehicles, enabling driverless technology and targeting market launch in two years. | EIC Accelerator | € 2.497.305 | 2023 | Details |
Integrated Safety for Deeply Embedded Systems Software (ISAFE)Het ISAFE-project ontwikkelt een geïntegreerde aanpak voor de kwalificatie van softwaretools in veiligheid kritische systemen, gericht op het voldoen aan veiligheidsstandaarden en het verbeteren van softwareontwikkeling. | Mkb-innovati... | € 160.200 | 2016 | Details |
Validatie van interpretaties door rijhulpsystemenV-Tron onderzoekt de haalbaarheid van softwarematige validatie van rijhulpsystemen om verkeersveiligheid en betrouwbaarheid te verbeteren. | Mkb-innovati... | € 20.000 | 2020 | Details |
Modulaire aansturing hardware voor zelfrijdende auto’sSmoob ontwikkelt zelfrijdende elektrische micro-cars met L2 autonomie, verzamelt data voor machine learning en streeft naar volledige autonomie zodra wetgeving dit toelaat, met continue software-updates en hardware-upgrades. | Mkb-innovati... | € 20.000 | 2022 | Details |
Ontwikkeling besturingssoftware architecturen voor vervanging slecht leverbare hardwareQIPC ontwikkelt softwarematige architecturen ter vervanging van slecht leverbare hardware om afhankelijkheid van componenten te verminderen. | Mkb-innovati... | € 20.000 | 2022 | Details |
Fail-operational safety – making autonomous vehicles a reality
Chassis Autonomy aims to finalize a fail-operational steer-by-wire system for fully autonomous vehicles, enabling driverless technology and targeting market launch in two years.
Integrated Safety for Deeply Embedded Systems Software (ISAFE)
Het ISAFE-project ontwikkelt een geïntegreerde aanpak voor de kwalificatie van softwaretools in veiligheid kritische systemen, gericht op het voldoen aan veiligheidsstandaarden en het verbeteren van softwareontwikkeling.
Validatie van interpretaties door rijhulpsystemen
V-Tron onderzoekt de haalbaarheid van softwarematige validatie van rijhulpsystemen om verkeersveiligheid en betrouwbaarheid te verbeteren.
Modulaire aansturing hardware voor zelfrijdende auto’s
Smoob ontwikkelt zelfrijdende elektrische micro-cars met L2 autonomie, verzamelt data voor machine learning en streeft naar volledige autonomie zodra wetgeving dit toelaat, met continue software-updates en hardware-upgrades.
Ontwikkeling besturingssoftware architecturen voor vervanging slecht leverbare hardware
QIPC ontwikkelt softwarematige architecturen ter vervanging van slecht leverbare hardware om afhankelijkheid van componenten te verminderen.