SUrrogate measures for SAFE autonomous and connected mobility

SUperSAFE aims to develop a proactive safety evaluation method for the interaction between conventional and connected automated vehicles to enhance traffic safety and support European zero-fatality goals.

Subsidie
€ 1.500.000
2023

Projectdetails

Introduction

SUperSAFE "SUrrogate measures for SAFE autonomous and connected mobility" will address the problem of the safety evaluation of the interaction between conventional vehicles and connected and automated vehicles (CAVs). The project builds on the notion that vehicle automation is posing new risks that the traditional accident-based and proactive safety analysis methods are unable to investigate.

Project Objectives

In SUperSAFE, I will select the relevant variables drawn on the newly identified risks posed by CAVs. With these, I will develop a new proactive method based on surrogate measures of safety for studying the effects of the physical and digital infrastructure on the interaction between road users in a mixed-mobility environment.

Context and Importance

Also considering the benchmarks for cities’ liveability and transport sustainability that include road casualties as a primary factor, the European White Paper on Transport calls to reach zero fatalities by 2050 following Vision Zero’s policy (zero serious casualties). Recent statistics indicate a reduction of traffic accidents but also that this development has slowed and additional efforts are required.

Current Challenges

At the same time, CAVs are already a reality. The tendency towards vehicle automation is even more evident in the European policies which encourage member states to push for the introduction of vehicles with advanced driver assistance systems. However, the road towards full automation is still not open because there is a fear of crashes/injuries and low acceptance of potential CAV accidents.

Unknown Variables

This is mainly because the CAVs’ behavior vis-à-vis the conventional vehicles on the road and the digital and physical infrastructure is still unknown.

Conclusion

To meet these rapidly approaching needs, I propose SUperSAFE, which will contribute to attaining the aforementioned European goals by developing a scientifically rigorous method of estimating risk based on the road users’ real needs to improve traffic safety in the transition period to fully automated driving.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.500.000
Totale projectbegroting€ 1.500.000

Tijdlijn

Startdatum1-1-2023
Einddatum31-12-2027
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • LUNDS UNIVERSITETpenvoerder

Land(en)

Sweden

Vergelijkbare projecten binnen European Research Council

ERC Proof of...

Automated Synthesis of Certifiable Control Software for Autonomous Vehicles

CertiCar aims to develop a reliable, formally correct advanced collision avoidance system to enhance safety and reduce testing time for autonomous vehicle control software.

€ 150.000
ERC Advanced...

Breaching the boundaries of safety and intelligence in autonomous systems with risk-based rationality

This project aims to develop a comprehensive risk-based autonomy framework for autonomous systems, enhancing safety and decision-making in marine environments through advanced modeling and human supervision.

€ 2.499.773
ERC Starting...

Towards Evidence-based Policies for Safe and Sound Robots: Harnessing experimentation to optimize the regulatory framing of healthcare robot technologies

The SAFEandSOUND project aims to bridge the gap between healthcare robotics and policy by developing evidence-based regulations to ensure user safety and guide technological innovation.

€ 1.499.308
ERC Consolid...

Autonomous Robots with Common Sense

This project aims to develop an 'Artificial Physical Awareness' autopilot system for autonomous robots, enabling them to operate safely and effectively despite failures by understanding their limitations.

€ 1.996.040
ERC Starting...

ENabling Self-Driving in Uncertain Real Environments

ENSURE aims to enhance self-driving safety by developing a predictive world model that manages uncertainties, enabling effective navigation in complex real-world scenarios.

€ 1.497.920

Vergelijkbare projecten uit andere regelingen

Mkb-innovati...

Project MITH2020 VeiligWerk

VeiligWerk onderzoekt een AI-gestuurde oplossing met bewegingssensoren om valincidenten op bouwplaatsen te detecteren en hulpdiensten direct in te schakelen, met als doel de veiligheid te verbeteren.

€ 20.000
Mkb-innovati...

Validatie van interpretaties door rijhulpsystemen

V-Tron onderzoekt de haalbaarheid van softwarematige validatie van rijhulpsystemen om verkeersveiligheid en betrouwbaarheid te verbeteren.

€ 20.000
Mkb-innovati...

Integrated Safety for Deeply Embedded Systems Software (ISAFE)

Het ISAFE-project ontwikkelt een geïntegreerde aanpak voor de kwalificatie van softwaretools in veiligheid kritische systemen, gericht op het voldoen aan veiligheidsstandaarden en het verbeteren van softwareontwikkeling.

€ 160.200
Mkb-innovati...

CrimeSense

Het project onderzoekt de haalbaarheid van een automatisch geweldsdetectiesysteem voor bewakingscamera's op basis van virtual gaming data.

€ 20.000
Mkb-innovati...

Betrouwbaardere en nauwkeurigere verkeersmodellen met big data

Mezuro B.V. en DAT.Mobility B.V. ontwikkelen innovatieve data-analyse technieken voor nauwkeurige verkeersmodellen, gericht op het verbeteren van verkeersmanagement en smart mobility.

€ 199.710