Multifunctional nano-bio INterfaces wIth deep braiN reGions

MINING aims to develop multifunctional neural endoscopes that simultaneously detect and trigger electrical and chemical signals in vivo, enhancing our understanding of brain dynamics with high resolution.

Subsidie
€ 2.992.875
2025

Projectdetails

Introduction

Capturing the dynamics of brain activity in its multifaceted components is a key challenge for neural interfaces. Deciphering the complex electrical and chemical signaling exchanged by the different constituents of the brain tissue will result in a better understanding of neural circuits and functions, informing and enabling novel diagnostic and therapeutic approaches.

Research Tools

Next generation of research tools should therefore aim at a multifunctional and fully integrated approach, probing and triggering multiple signals simultaneously with high spatio-temporal resolution and low invasiveness.

Project Aspirations

MINING aspires at generating a novel class of multifunctional neural endoscopes, able to trigger and detect electrical and molecular signaling with cellular resolution in vivo. The result will be the unprecedented ability to correlate multiple types of signals in the same volume, with spatial and temporal resolution at depth.

Overcoming Limitations

The limitation of current state of the art will be surmounted by exploiting light-matter interactions in hybrid metal-dielectric metasurfaces and their synergistic integration with organic electrochemical transistors.

Main Objectives

The main objectives of MINING are:

  1. Devise hybrid metal-dielectric metasurface (HMS) neural endoscopes, enabling simultaneous:

    • High-resolution functional imaging of neural signals,
    • Label-free optical monitoring of chemical compounds from both wide and localized brain volumes,
    • Optogenetic and thermoplasmonic modulation of neural functions with cellular resolution.
  2. Integration of organic electrochemical transistors on HMS endoscopes, generating a novel optoelectrical neural interface with cellular resolution based on active electronics.

  3. Development of methods for spatial-resolved multifunctional studies, to demonstrate the power of MINING endoscopes to reveal so far hidden patterns of electrochemical functional dynamics in the living mouse brain.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.992.875
Totale projectbegroting€ 2.992.875

Tijdlijn

Startdatum1-1-2025
Einddatum31-12-2029
Subsidiejaar2025

Partners & Locaties

Projectpartners

  • FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIApenvoerder

Land(en)

Italy

Vergelijkbare projecten binnen European Research Council

ERC Starting...

Bidirectional remote deep brain control with magnetic anisotropic nanomaterials

BRAINMASTER aims to develop a scalable, wireless neuromodulation system using magnetic nanodiscs for deep brain therapy and imaging, enhancing cognitive training and treatment for neurological disorders.

€ 1.500.000
ERC Starting...

measuriNg nEURal dynamics with label-free OpticaL multI-DomAin Recordings

This project aims to innovate label-free optical methods for monitoring neural dynamics in the brain, enhancing understanding and treatment of brain diseases without exogenous reporters.

€ 1.634.825
ERC Starting...

Enabling Unobtrusive Real-World Monitoring of Brain-Networks with Wearable Neurotechnology and Multimodal Machine Learning

The INTEGRAL project aims to develop a hybrid wearable platform combining HD-DOT and EEG for continuous brain network imaging in everyday environments, enhancing neurotechnology research and applications.

€ 1.654.850
ERC Starting...

Neuromorphic Flexible Electro/chemical Interface for in-Memory Bio-Sensing and Computing.

Develop a miniaturized, self-contained biosensing technology using neuromorphic devices for real-time monitoring and classification of neurodegenerative biomarkers in individualized healthcare.

€ 1.500.000
ERC Starting...

5D Electro-Mechanical Bio-Interface for Neuronal Tissue Engineering

Develop a novel 3D biomaterial for leadless electrical and mechanical modulation to enhance brain research and neuroengineering applications.

€ 1.750.000

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

MagnetoElectric and Ultrasonic Technology for Advanced BRAIN modulation

META-BRAIN aims to develop non-invasive, precise control of brain activity using magnetoelectric nanoarchitectures and ultrasonic technologies, enhancing treatment for neurological disorders.

€ 2.987.655
EIC Pathfinder

Distributed and federated cross-modality actuation through advanced nanomaterials and neuromorphic learning

CROSSBRAIN aims to revolutionize brain condition treatment using implantable microbots for real-time, adaptive neuromodulation and sensing in rodent models of Parkinson's Disease and Epilepsy.

€ 4.034.074
EIC Pathfinder

Wireless deep BRAIN STimulation thrOugh engineeRed Multifunctinal nanomaterials

BRAINSTORM aims to develop a scalable wireless neuromodulation technology using smart magnetic nanomaterials to selectively control deep brain neurons for therapeutic applications in Fragile X syndrome.

€ 3.083.850
EIC Pathfinder

BioFunctional IntraNeural Electrodes

BioFINE aims to develop advanced flexible intraneural multielectrode arrays for improved long-term integration with peripheral nerves, enhancing bionic limb communication and neurotechnology.

€ 1.945.622
EIC Pathfinder

Minimally Invasive Neuromodulation Implant and implantation procedure based on ground-breaking GRAPHene technology for treating brain disorders

The MINIGRAPH project aims to revolutionize neuromodulation therapy for brain diseases by developing minimally invasive, personalized brain implants with closed-loop capabilities and high-resolution graphene microelectrodes.

€ 4.428.402