measuriNg nEURal dynamics with label-free OpticaL multI-DomAin Recordings

This project aims to innovate label-free optical methods for monitoring neural dynamics in the brain, enhancing understanding and treatment of brain diseases without exogenous reporters.

Subsidie
€ 1.634.825
2025

Projectdetails

Introduction

The growing societal burden of brain diseases is one of the most significant health challenges globally. To help diagnose or treat these pathologies, there is widespread agreement that a deeper understanding is needed on the origin of neural disorders linked to electrical neural activity, neuromodulator dynamics, and molecular alterations.

Current Limitations

To this aim, the combination of optical methods with genetically expressed molecular probes has enabled great advances in understanding brain mechanisms. However, the existing tools fail in capturing a comprehensive picture of multifaceted neural dynamics.

In addition, the translational applications of these techniques are hindered by the need for exogenous reporters. As a result, there is a major scientific and technological gap that obstructs the full exploitation of cutting-edge neuro technologies to relieve the impact of brain diseases in the human population.

Proposed Approach

To bridge this gap, this project proposes an innovative approach to monitor neural dynamics in the mammalian brain using label-free light-matter interactions without exogenous reporters.

To do this, I will develop a radically novel strategy harnessing the temporal and spectral dynamics of light stimuli interacting with the brain through photonic neural interfaces enhanced by integrated optical nano modulators. This approach will surpass the limitations of existing techniques in monitoring the physical complexity of neural signals.

Objectives

I will aim at three main objectives:

  1. Developing label-free molecular sensing in arbitrary deep brain regions.
  2. Developing label-free, multifunctional, ultrathin, all-optical probes for dissecting the local micro-circuitry.
  3. Developing label-free, large-scale all-optical systems for multifunctional recordings at the global brain scale.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.634.825
Totale projectbegroting€ 1.634.825

Tijdlijn

Startdatum1-3-2025
Einddatum28-2-2030
Subsidiejaar2025

Partners & Locaties

Projectpartners

  • UNIVERSITA DEGLI STUDI DI PADOVApenvoerder

Land(en)

Italy

Vergelijkbare projecten binnen European Research Council

ERC Proof of...

Method for Integrated All-Optical Biological Analysis at Scale

Developing an all-optical platform for precise optogenetic probing and automated data analysis to enhance research in neuroscience, developmental biology, and cancer.

€ 150.000
ERC Starting...

A two-photon compound fiberscope to study the brain at all spatial and temporal scales.

Developing a novel 2P compound fiberscope to enable imaging and manipulation of neuronal circuits in freely moving animals, enhancing our understanding of brain function and behavior.

€ 1.708.614
ERC Proof of...

Minimally invasive endoscopes for neuronal activity monImaging-assisted single-cell specific activity monitoring and optogenetic stimulation of deep brain structures in motile and awaken animal models

WOKEGATE aims to enhance minimally invasive endoscopes for real-time monitoring of neuronal activity in awake animals, facilitating advanced neuroscience research and commercial applications.

€ 150.000
ERC Consolid...

Multifunctional nano-bio INterfaces wIth deep braiN reGions

MINING aims to develop multifunctional neural endoscopes that simultaneously detect and trigger electrical and chemical signals in vivo, enhancing our understanding of brain dynamics with high resolution.

€ 2.992.875
ERC Starting...

All-optical photoacoustic imaging for neurobiology

Developing advanced sensors for high-speed, high-sensitivity photoacoustic imaging to non-invasively capture single-neuron activity deep in the mouse brain.

€ 1.499.667

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

MagnetoElectric and Ultrasonic Technology for Advanced BRAIN modulation

META-BRAIN aims to develop non-invasive, precise control of brain activity using magnetoelectric nanoarchitectures and ultrasonic technologies, enhancing treatment for neurological disorders.

€ 2.987.655
EIC Pathfinder

A synaptic mechanogenetic technology to repair brain connectivity

Developing a mechanogenetic technology using magnetic nanoparticles to non-invasively regulate neural circuits for treating treatment-resistant brain disorders like stroke and epilepsy.

€ 3.543.967