5D Electro-Mechanical Bio-Interface for Neuronal Tissue Engineering

Develop a novel 3D biomaterial for leadless electrical and mechanical modulation to enhance brain research and neuroengineering applications.

Subsidie
€ 1.750.000
2024

Projectdetails

Introduction

The cellular microenvironment is tightly regulated by biochemical and physical cues. While state-of-the-art electrical and mechanical devices can perturb the biophysical cell niche in 2D monolayers, 3D tissue cultures are considered a much more comprehensive and representative model of the in vivo microenvironment.

Limitations of Current Technologies

However, the available biomodulation “toolkit” does not meet the required level of complexity, specificity, and accuracy. This limitation hinders the ability to address basic questions in brain research and to develop new nonpharmacological interventions such as next-generation neuroengineering technologies and biointerfaces.

Proposed Solution

We propose to develop a novel biomaterial for nongenetic leadless electrical and mechanical biomodulation in 3D engineered tissues.

Electrical Biomodulation

The leadless electrical biomodulation will be induced via optical illumination of semiconducting silicon micro- and nanostructures, which will potentially yield spatial resolution of hundreds of nanometers, two orders of magnitude smaller than the current state-of-the-art 3D biointerfaces.

Mechanical Perturbation

The mechanical perturbation will be achieved by spatially defined iron microstructures that will be manipulated via spatially homogenous magnetic fields, resulting in mechanical perturbation resolution down to a few microns, which is unprecedented in 3D tissue constructs.

Integration of Technologies

Lastly, we will integrate the two materials into a single 3D platform to construct the 5D-NEURO, allowing leadless electrical and mechanical bi-modal perturbation simultaneously and independently.

Objectives

Herein, we will both establish a new tool for biophysical modulation and generate new fundamental knowledge about the role of bioelectrical, biomechanical, and their synergistic effect on neuronal growth and regeneration in 3D models.

Future Applications

Moreover, such a platform lays the ground for next-generation engineered tissues for applications spanning from fundamental brain developmental research to future translational clinical interventions.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.750.000
Totale projectbegroting€ 1.750.000

Tijdlijn

Startdatum1-11-2024
Einddatum31-10-2029
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • TECHNION - ISRAEL INSTITUTE OF TECHNOLOGYpenvoerder

Land(en)

Israel

Vergelijkbare projecten binnen European Research Council

ERC Advanced...

Engineering soft microdevices for the mechanical characterization and stimulation of microtissues

This project aims to advance mechanobiology by developing soft robotic micro-devices to study and manipulate 3D tissue responses, enhancing understanding of cell behavior and potential cancer treatments.

€ 3.475.660
ERC Starting...

Neuromorphic Flexible Electro/chemical Interface for in-Memory Bio-Sensing and Computing.

Develop a miniaturized, self-contained biosensing technology using neuromorphic devices for real-time monitoring and classification of neurodegenerative biomarkers in individualized healthcare.

€ 1.500.000
ERC Starting...

Bidirectional remote deep brain control with magnetic anisotropic nanomaterials

BRAINMASTER aims to develop a scalable, wireless neuromodulation system using magnetic nanodiscs for deep brain therapy and imaging, enhancing cognitive training and treatment for neurological disorders.

€ 1.500.000
ERC Proof of...

Advanced 3D in vitro models based on magnetically-driven docking of modular microscaffolds

This project aims to develop 3D modular co-culture systems using magnetic microscaffolds to replicate brain tumor microenvironments for drug screening and cancer therapy testing.

€ 150.000
ERC Starting...

Soft optoelectronics and ion-based circuits for diagnostics and closed-loop neuromodulation of the auditory pathway

Develop a fully implantable, biocompatible electro-optical neurostimulation system using ion gated transistors and OLEDs to enhance neural signal acquisition and treatment of sensory dysfunctions.

€ 1.499.213

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

BioFunctional IntraNeural Electrodes

BioFINE aims to develop advanced flexible intraneural multielectrode arrays for improved long-term integration with peripheral nerves, enhancing bionic limb communication and neurotechnology.

€ 1.945.622
EIC Pathfinder

A synaptic mechanogenetic technology to repair brain connectivity

Developing a mechanogenetic technology using magnetic nanoparticles to non-invasively regulate neural circuits for treating treatment-resistant brain disorders like stroke and epilepsy.

€ 3.543.967
EIC Pathfinder

MagnetoElectric and Ultrasonic Technology for Advanced BRAIN modulation

META-BRAIN aims to develop non-invasive, precise control of brain activity using magnetoelectric nanoarchitectures and ultrasonic technologies, enhancing treatment for neurological disorders.

€ 2.987.655
EIC Pathfinder

Distributed and federated cross-modality actuation through advanced nanomaterials and neuromorphic learning

CROSSBRAIN aims to revolutionize brain condition treatment using implantable microbots for real-time, adaptive neuromodulation and sensing in rodent models of Parkinson's Disease and Epilepsy.

€ 4.034.074
EIC Pathfinder

Wireless deep BRAIN STimulation thrOugh engineeRed Multifunctinal nanomaterials

BRAINSTORM aims to develop a scalable wireless neuromodulation technology using smart magnetic nanomaterials to selectively control deep brain neurons for therapeutic applications in Fragile X syndrome.

€ 3.083.850