Hybrid dry–hot Extremes prediction and AdapTation
The HEAT project aims to enhance subseasonal forecasting of droughts and heatwaves using a hybrid AI-physics model to improve preparedness for heat stress and inform land adaptation strategies.
Projectdetails
Introduction
Half a million people die due to heat stress every year. These numbers keep rising as the climate continues to change. Heatwaves are becoming more frequent and severe, and disproportionately synchronized with droughts. Droughts reduce the ability of the land surface to cool down via evaporation, further enhancing heatwave temperatures. Nonetheless, how these compound drought–heatwave events spatially propagate, and their future lethality, remains unclear. Counterintuitive findings now indicate that drought can even dampen heatwave deadliness by reducing air humidity.
Current Limitations
Consequently, our ability to forecast dry–hot events and their impacts on human health remains limited. Subseasonal timescales, between two weeks and two months, have traditionally been a blind spot: conventional weather forecast models are not tailored to these scales. However, the adoption of Artificial Intelligence (AI) may hold the key to fill this gap and reliably predict the upcoming occurrence of heat stress episodes weeks in advance. This would bring enormous societal benefits by enabling emergency planning.
Project Objectives
In this project, we will explore an innovative way to generate subseasonal forecasts of droughts and heatwaves, and their consequent human heat stress episodes. A 'hybrid' approach will be embraced, i.e., an approach based on physics-based models combined with AI algorithms.
Research Focus
Building upon this approach, we will:
- Deepen our understanding of the climatic drivers of human heat stress.
- Explore the future benefits of land-based adaptation practices designed to attenuate these events, including:
- Afforestation
- Crop selection
- Large-scale irrigation
Conclusion
Altogether, HEAT will foster our preparedness and resilience to future heat stress episodes – by improving their prediction, investigating the mechanisms that trigger them globally, and providing realistic and effective land-adaptation strategies to mitigate them – while heralding the adoption of hybrid approaches in climate science.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.983.000 |
Totale projectbegroting | € 1.983.000 |
Tijdlijn
Startdatum | 1-5-2023 |
Einddatum | 30-4-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- UNIVERSITEIT GENTpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
LAgrangian Climate Risk and Impact AttributionLACRIMA aims to assess climate change impacts on human health and vulnerability over a lifetime using machine learning, linking demographic factors to extreme event exposure and life expectancy. | ERC Consolid... | € 1.999.590 | 2024 | Details |
Operational Heat-Health-Social Early Warning SystemThe project aims to develop an innovative Heat-Health-Social Early Warning System that integrates weather forecasts and social vulnerability to improve public health responses to temperature-related risks. | ERC Proof of... | € 150.000 | 2022 | Details |
Pathways to survival in a hotter worldHotLife aims to investigate heat tolerance in birds through advanced physiology and genomics to understand its evolutionary potential and implications for survival under climate change. | ERC Consolid... | € 1.999.966 | 2025 | Details |
Unravelling the mechanisms behind Multi-Year DroughtsThe MultiDry project aims to enhance understanding of multi-year droughts' drivers and impacts through innovative modeling and observations, informing future water management and policy decisions. | ERC Starting... | € 1.500.000 | 2023 | Details |
Islands as natural laboratories of global warming: discovering insects’ ability to survive thermal extremesIGNITE investigates insect resilience to extreme heat through interdisciplinary methods, aiming to understand their adaptability and its ecological impacts in the face of global warming. | ERC Starting... | € 1.500.000 | 2025 | Details |
LAgrangian Climate Risk and Impact Attribution
LACRIMA aims to assess climate change impacts on human health and vulnerability over a lifetime using machine learning, linking demographic factors to extreme event exposure and life expectancy.
Operational Heat-Health-Social Early Warning System
The project aims to develop an innovative Heat-Health-Social Early Warning System that integrates weather forecasts and social vulnerability to improve public health responses to temperature-related risks.
Pathways to survival in a hotter world
HotLife aims to investigate heat tolerance in birds through advanced physiology and genomics to understand its evolutionary potential and implications for survival under climate change.
Unravelling the mechanisms behind Multi-Year Droughts
The MultiDry project aims to enhance understanding of multi-year droughts' drivers and impacts through innovative modeling and observations, informing future water management and policy decisions.
Islands as natural laboratories of global warming: discovering insects’ ability to survive thermal extremes
IGNITE investigates insect resilience to extreme heat through interdisciplinary methods, aiming to understand their adaptability and its ecological impacts in the face of global warming.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
CaeliHet project onderzoekt de haalbaarheid van een AI-systeem voor het real-time voorspellen van klimatologische rampen en hun economische impact op overheid, gemeenten, burgers en verzekeraars. | Mkb-innovati... | € 20.000 | 2020 | Details |
Optimizing district energy networks with AIHet project ontwikkelt en test een AI-gestuurd technologieplatform voor het optimaliseren van warmte- en koudenetten, met als doel verliezen te minimaliseren en de efficiëntie te verbeteren. | Demonstratie... | € 220.219 | 2019 | Details |
SHM-RDYHet project ontwikkelt een digitale tweeling van warmtenetwerken met AI-gestuurde optimalisatie om energie-efficiëntie te verhogen en CO2-uitstoot te verlagen, met een verwachte vermindering van warmteverlies met 10%. | Demonstratie... | € 805.157 | Onbekend | Details |
COOLIFEALMADA: Facing heat waves through 4D cooling actions in Almada hotspotsCOOLIFEALMADA aims to enhance urban resilience to heat waves in Almada by creating a green corridor, implementing nature-based solutions, and introducing innovative cooling technologies. | LIFE Standar... | € 1.778.908 | 2023 | Details |
Testing optical solutions for calibrating models that predict behavior of soil bodiesHet project ontwikkelt een geïntegreerd systeem van optische sensoren en rekenmodellen om grondgedrag onder extreme weersomstandigheden te voorspellen, ter verbetering van infrastructuurbeheer. | Mkb-innovati... | € 20.000 | 2021 | Details |
Caeli
Het project onderzoekt de haalbaarheid van een AI-systeem voor het real-time voorspellen van klimatologische rampen en hun economische impact op overheid, gemeenten, burgers en verzekeraars.
Optimizing district energy networks with AI
Het project ontwikkelt en test een AI-gestuurd technologieplatform voor het optimaliseren van warmte- en koudenetten, met als doel verliezen te minimaliseren en de efficiëntie te verbeteren.
SHM-RDY
Het project ontwikkelt een digitale tweeling van warmtenetwerken met AI-gestuurde optimalisatie om energie-efficiëntie te verhogen en CO2-uitstoot te verlagen, met een verwachte vermindering van warmteverlies met 10%.
COOLIFEALMADA: Facing heat waves through 4D cooling actions in Almada hotspots
COOLIFEALMADA aims to enhance urban resilience to heat waves in Almada by creating a green corridor, implementing nature-based solutions, and introducing innovative cooling technologies.
Testing optical solutions for calibrating models that predict behavior of soil bodies
Het project ontwikkelt een geïntegreerd systeem van optische sensoren en rekenmodellen om grondgedrag onder extreme weersomstandigheden te voorspellen, ter verbetering van infrastructuurbeheer.