Time-based single molecule nanolocalization for live cell imaging
The project aims to develop a novel live-cell nanoscopy technique that enables high-speed, high-resolution imaging of biological processes at the nanoscale without compromising depth or volume.
Projectdetails
Introduction
Despite the tremendous advances in single molecule localization microscopy mainly obtained on fixed cells, a major step is highly needed to transform it into a genuine live-cell nanoscopy. This transformation is essential to understand biological processes in their full multi-scale nature, from the individual molecule, to the cell, to the multicellular tissues.
Current Limitations
Currently, there is no solution to image with an acquisition speed compatible with the dynamics of living cells (>kHz), over large volumes (>10000 μm³), with significant in-depth imaging capability (>10 µm) without compromising the resolution (<10 nm), especially in the axial dimension.
Proposed Solution
I will demonstrate that these challenges can be met without trade-offs by proposing a disruptive approach that requires the entire illumination and detection strategies to be considered anew.
Optical Implementation
Building on my achievements in super-resolution microscopy, I propose a disruptive optical implementation where a full-time coding approach allows for the retrieval of spatial information. This not only meets the needed acquisition rate but also brings the richness of functional information (spectral, lifetime).
Conceptual Breakthrough
In a first conceptual breakthrough, a new sweeping modulated illumination is introduced. Here, each point along the direction of the modulation can be retrieved through a unique frequency, without any ambiguity. By applying this frequency tagging in all dimensions, every single molecule event is described by a unique set of three frequencies.
Paradigm Shift
This uniqueness triggers a second change of paradigm, as emitter positions within a large field of view can now be retrieved in a camera-free setting. Fast acquisition can be performed by a single monodetector, but the power of this temporal approach will be decoupled by the ultimate technical advances of new neuromorphic detections.
Conclusion
This unique in-depth information at the nanoscale will allow us to finally decipher the structural and functional interplay in key biological mechanisms in living cells, yielding unprecedented benefits.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.498.196 |
Totale projectbegroting | € 2.498.196 |
Tijdlijn
Startdatum | 1-11-2023 |
Einddatum | 31-10-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Nanoscale Isotropic 3D Resolution using Omni-view Structured Light Sheet MicroscopyThis project aims to revolutionize biological imaging by developing a novel optical architecture for super-resolution microscopy that enhances 3D imaging resolution and sample longevity without trade-offs. | ERC Advanced... | € 2.293.558 | 2022 | Details |
Lensless label-free nanoscopyThis project aims to develop deep UV lensless holotomographic nanoscopy for high-resolution, large-field imaging of live cells to enhance understanding of extracellular vesicles as disease biomarkers. | ERC Starting... | € 1.500.000 | 2024 | Details |
Super-resolution Field-Resolved Stimulated Raman MicroscopyThis project aims to develop a super-resolution, label-free Raman microscope using femtosecond laser technology to non-invasively visualize subcellular structures with unprecedented sensitivity and resolution. | ERC Consolid... | € 1.996.250 | 2025 | Details |
Single-Molecule Acousto-Photonic NanofluidicsSIMPHONICS aims to develop a high-throughput, non-invasive platform for protein fingerprinting by integrating nanopore technology with acoustic manipulation and fluorescence detection. | ERC Starting... | € 1.499.395 | 2022 | Details |
A two-photon compound fiberscope to study the brain at all spatial and temporal scales.Developing a novel 2P compound fiberscope to enable imaging and manipulation of neuronal circuits in freely moving animals, enhancing our understanding of brain function and behavior. | ERC Starting... | € 1.708.614 | 2024 | Details |
Nanoscale Isotropic 3D Resolution using Omni-view Structured Light Sheet Microscopy
This project aims to revolutionize biological imaging by developing a novel optical architecture for super-resolution microscopy that enhances 3D imaging resolution and sample longevity without trade-offs.
Lensless label-free nanoscopy
This project aims to develop deep UV lensless holotomographic nanoscopy for high-resolution, large-field imaging of live cells to enhance understanding of extracellular vesicles as disease biomarkers.
Super-resolution Field-Resolved Stimulated Raman Microscopy
This project aims to develop a super-resolution, label-free Raman microscope using femtosecond laser technology to non-invasively visualize subcellular structures with unprecedented sensitivity and resolution.
Single-Molecule Acousto-Photonic Nanofluidics
SIMPHONICS aims to develop a high-throughput, non-invasive platform for protein fingerprinting by integrating nanopore technology with acoustic manipulation and fluorescence detection.
A two-photon compound fiberscope to study the brain at all spatial and temporal scales.
Developing a novel 2P compound fiberscope to enable imaging and manipulation of neuronal circuits in freely moving animals, enhancing our understanding of brain function and behavior.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Breaking the Resolution Limit in Two-Photon Microscopy Using Negative PhotochromismThis project aims to develop a novel multiphoton microscopy technique that achieves four-photon-like spatial resolution using two-photon absorption, enhancing biomedical imaging capabilities. | EIC Pathfinder | € 2.266.125 | 2023 | Details |
Photonic chip based high-throughput, multi-modal and scalable optical nanoscopy platformNanoVision aims to revolutionize optical nanoscopy with an affordable, compact, and high-throughput photonic-chip solution, enhancing accessibility and flexibility for research and clinical labs. | EIC Transition | € 2.489.571 | 2022 | Details |
Fast gated superconducting nanowire camera for multi-functional optical tomographThis project aims to develop a multifunctional optical tomograph using an innovative light sensor to enhance deep body imaging and monitor organ functionality with 100x improved signal-to-noise ratio. | EIC Pathfinder | € 2.495.508 | 2023 | Details |
On-chip tomographic microscopy: a paraDIgm Shift for RevolUtionizing lab-on-a-chiP bioimaging technologyDISRUPT aims to revolutionize biomedical imaging with a novel lab-on-chip technology for cost-effective, high-resolution cancer detection and diagnostics using integrated tomographic microscopy and AI. | EIC Pathfinder | € 3.018.312 | 2022 | Details |
Single Molecule Nuclear Magnetic Resonance Microscopy for Complex Spin SystemsThis project aims to enhance NMR sensitivity to single molecules using scanning probe microscopy, enabling groundbreaking insights in nanotechnology and impacting NMR and SPM markets. | EIC Pathfinder | € 2.994.409 | 2023 | Details |
Breaking the Resolution Limit in Two-Photon Microscopy Using Negative Photochromism
This project aims to develop a novel multiphoton microscopy technique that achieves four-photon-like spatial resolution using two-photon absorption, enhancing biomedical imaging capabilities.
Photonic chip based high-throughput, multi-modal and scalable optical nanoscopy platform
NanoVision aims to revolutionize optical nanoscopy with an affordable, compact, and high-throughput photonic-chip solution, enhancing accessibility and flexibility for research and clinical labs.
Fast gated superconducting nanowire camera for multi-functional optical tomograph
This project aims to develop a multifunctional optical tomograph using an innovative light sensor to enhance deep body imaging and monitor organ functionality with 100x improved signal-to-noise ratio.
On-chip tomographic microscopy: a paraDIgm Shift for RevolUtionizing lab-on-a-chiP bioimaging technology
DISRUPT aims to revolutionize biomedical imaging with a novel lab-on-chip technology for cost-effective, high-resolution cancer detection and diagnostics using integrated tomographic microscopy and AI.
Single Molecule Nuclear Magnetic Resonance Microscopy for Complex Spin Systems
This project aims to enhance NMR sensitivity to single molecules using scanning probe microscopy, enabling groundbreaking insights in nanotechnology and impacting NMR and SPM markets.