Super-resolution Field-Resolved Stimulated Raman Microscopy

This project aims to develop a super-resolution, label-free Raman microscope using femtosecond laser technology to non-invasively visualize subcellular structures with unprecedented sensitivity and resolution.

Subsidie
€ 1.996.250
2025

Projectdetails

Introduction

The next generation of biological imaging will be a movement towards super-resolution, label-free approaches to visualize subcellular structures in a nonperturbative, non-invasive manner.

Proposal Overview

In this proposal, a super-resolution, label-free, Raman microscope based on a novel, ambient-air, field-detector is envisioned to fulfill the requirements of these exciting prospects, essential for biomedical advancements.

Methodology

By employing bright, ultra-broadband, femtosecond electromagnetic forces at petahertz frequencies, Raman molecular vibrations are driven coherently and efficiently.

Temporal Confinement

Temporal confinement of the excitation pulses to a few femtoseconds allows for:

  1. Temporal filtering of the molecular response
  2. High signal-to-noise ratio
  3. High detection sensitivity

Detection Technology

The same laser provides optical pulses with ultrashort duration to directly access and detect the field oscillations of the emitted Raman molecular response. This novel detection metrology allows for simultaneous and broadband detection of the entire molecular fingerprint and beyond with high dynamic range and sensitivity down to quantum shot noise.

Advantages of Near-Field Imaging

Most importantly, due to the near-field imaging in this scheme, super-resolution, chemically sensitive images can be constructed without the need for labeling molecules or using structured light.

Conclusion

The advanced near-infrared femtosecond source in combination with the novel field detection technology will enable acquiring the complete fingerprint of complex biological molecules non-invasively with a spatial resolution and sensitivity exceeding that of any previously demonstrated method, for the first time.

The next generation of laser-driven biological microscopy requires a dramatic leap in sensitivity, dynamic range, spatial resolution, and non-invasiveness; this proposal represents a coherent, achievable approach to fulfilling this need, opening up new horizons for fundamental studies in science to see beyond the visible.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.996.250
Totale projectbegroting€ 1.996.250

Tijdlijn

Startdatum1-1-2025
Einddatum31-12-2029
Subsidiejaar2025

Partners & Locaties

Projectpartners

  • MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EVpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC Advanced...

Time-based single molecule nanolocalization for live cell imaging

The project aims to develop a novel live-cell nanoscopy technique that enables high-speed, high-resolution imaging of biological processes at the nanoscale without compromising depth or volume.

€ 2.498.196
ERC Consolid...

Laser-Based Infrared Vibrational Electric-Field Fingerprinting

The LIVE project aims to enhance IR spectroscopy using femtosecond lasers for non-destructive, label-free analysis of biological samples, improving sensitivity and applicability in biomedical settings.

€ 1.881.875
ERC Proof of...

Super-resolution microscopy for semiconductor metrology

The MICROSEM project aims to develop a super-resolution microscopy technique using high-harmonic generation for sub-100 nm imaging in semiconductors, enhancing metrology without labeling.

€ 150.000
ERC Starting...

Lensless label-free nanoscopy

This project aims to develop deep UV lensless holotomographic nanoscopy for high-resolution, large-field imaging of live cells to enhance understanding of extracellular vesicles as disease biomarkers.

€ 1.500.000
ERC Starting...

Lightsheet Brillouin Nanoscopy: mechano-sensitive superresolution imaging for regenerative medicine

This project aims to develop Lightsheet Brillouin Nanoscopy (LiBriNa), a groundbreaking microscopy technique for imaging viscoelasticity in living cardiac tissues at unprecedented speed and resolution.

€ 1.807.313

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

Breaking the Resolution Limit in Two-Photon Microscopy Using Negative Photochromism

This project aims to develop a novel multiphoton microscopy technique that achieves four-photon-like spatial resolution using two-photon absorption, enhancing biomedical imaging capabilities.

€ 2.266.125
EIC Pathfinder

Single Molecule Nuclear Magnetic Resonance Microscopy for Complex Spin Systems

This project aims to enhance NMR sensitivity to single molecules using scanning probe microscopy, enabling groundbreaking insights in nanotechnology and impacting NMR and SPM markets.

€ 2.994.409
EIC Transition

Photonic chip based high-throughput, multi-modal and scalable optical nanoscopy platform

NanoVision aims to revolutionize optical nanoscopy with an affordable, compact, and high-throughput photonic-chip solution, enhancing accessibility and flexibility for research and clinical labs.

€ 2.489.571
EIC Pathfinder

Development of an In-Vivo Brillouin Microscope (with application to Protein Aggregation-based Pathologies)

This project aims to enhance Brillouin Microscopy for real-time, non-destructive assessment of viscoelastic properties in living cells, addressing key biomedical challenges.

€ 3.333.513