Photonic chip based high-throughput, multi-modal and scalable optical nanoscopy platform
NanoVision aims to revolutionize optical nanoscopy with an affordable, compact, and high-throughput photonic-chip solution, enhancing accessibility and flexibility for research and clinical labs.
Projectdetails
Introduction
The invention of super-resolution optical microscopy (nanoscopy) has given us a glimpse of its impact in all fields of science and medical care. Imagine the new scientific discoveries that can be realized if every research and clinical laboratory is equipped with an optical nanoscope that can deliver super-resolution imaging, enabling researchers a window to nanoscale biology.
Current Challenges
However, several pain points of the available solutions currently hinder wide-scale penetration of optical nanoscopy, such as:
- Cost
- Complexity
- Small throughput
- Limited flexibility in terms of choice of resolution and field-of-view (FOV)
Solution Overview
NanoVision will fill this pressing gap in the market with an affordable, compact, multi-modal, and high-throughput photonic-chip based optical nanoscopy. Present-day nanoscopes use a simple glass slide to hold the sample and a complex and bulky microscope setup to illuminate and image.
Innovative Approach
We change the current paradigm to a mass-producible photonic-chip to hold and illuminate the sample and a simple and compact optical microscope to image it. Our radical idea is thus to take out laser light steering and delivery from the microscope and transfer it to a photonic-chip.
Benefits of NanoVision
Photonic-chip based nanoscopy improves:
- Throughput by a factor of 100x
- Cost by a factor of 2x
- Flexibility in terms of resolution and FOV
These key differentiators of NanoVision will not only extend the present market of nanoscopy but could also open new market opportunities.
Development Status
Founded on two patent families, it has been brought up to TRL 4. A spin-off, Chip NanoImaging (CNI), has been incorporated. NanoVision will propel the technology to TRL 6 by developing a user-friendly prototype and validating its impact during year-long user tests.
Financial Projections
The business and market development activities will enable us to attract investments of Euro 2M by 2024, with an estimated revenue of Euro 60M by 2029.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.489.571 |
Totale projectbegroting | € 2.489.571 |
Tijdlijn
Startdatum | 1-6-2022 |
Einddatum | 31-5-2025 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- CHIP NANOIMAGING ASpenvoerder
- UNIVERSITETET I TROMSOE - NORGES ARKTISKE UNIVERSITET
- EUROPEAN MOLECULAR BIOLOGY LABORATORY
- KAROLINSKA INSTITUTET
Land(en)
Vergelijkbare projecten binnen EIC Transition
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Revolutionizing Spatial Biology with a cutting-edge Multi-Scale Imaging platformThe NanoSCAN project aims to develop the SAFe-nSCAN platform for high-resolution 3D tissue analysis, enhancing molecular profiling and advancing personalized therapies in immuno-oncology. | EIC Transition | € 2.489.162 | 2023 | Details |
The world’s most sensitive absorption microscopeQlibriNANO aims to validate and enhance the world's most sensitive absorption microscope for nanoscale matter analysis, targeting market readiness and scalability by 2027. | EIC Transition | € 2.480.000 | 2024 | Details |
Radically New Cancer Therapy Based on Advances in Nanotechnology and Photonics for Simultaneous Imaging and Treatment of Solid TumoursScanNanoTreat aims to revolutionize cancer treatment by integrating advanced imaging and therapy technologies to improve patient outcomes and reduce costs, targeting clinical trials by 2027. | EIC Transition | € 2.499.911 | 2025 | Details |
Revolutionizing Spatial Biology with a cutting-edge Multi-Scale Imaging platform
The NanoSCAN project aims to develop the SAFe-nSCAN platform for high-resolution 3D tissue analysis, enhancing molecular profiling and advancing personalized therapies in immuno-oncology.
The world’s most sensitive absorption microscope
QlibriNANO aims to validate and enhance the world's most sensitive absorption microscope for nanoscale matter analysis, targeting market readiness and scalability by 2027.
Radically New Cancer Therapy Based on Advances in Nanotechnology and Photonics for Simultaneous Imaging and Treatment of Solid Tumours
ScanNanoTreat aims to revolutionize cancer treatment by integrating advanced imaging and therapy technologies to improve patient outcomes and reduce costs, targeting clinical trials by 2027.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Lensless label-free nanoscopyThis project aims to develop deep UV lensless holotomographic nanoscopy for high-resolution, large-field imaging of live cells to enhance understanding of extracellular vesicles as disease biomarkers. | ERC Starting... | € 1.500.000 | 2024 | Details |
On-chip tomographic microscopy: a paraDIgm Shift for RevolUtionizing lab-on-a-chiP bioimaging technologyDISRUPT aims to revolutionize biomedical imaging with a novel lab-on-chip technology for cost-effective, high-resolution cancer detection and diagnostics using integrated tomographic microscopy and AI. | EIC Pathfinder | € 3.018.312 | 2022 | Details |
Nano electro-optomechanical programmable integrated circuitsNEUROPIC aims to develop a programmable photonic chip architecture for diverse applications, leveraging nanoelectromechanical technologies to enhance efficiency and enable neuromorphic computing. | EIC Pathfinder | € 2.999.924 | 2023 | Details |
Nanoscale Isotropic 3D Resolution using Omni-view Structured Light Sheet MicroscopyThis project aims to revolutionize biological imaging by developing a novel optical architecture for super-resolution microscopy that enhances 3D imaging resolution and sample longevity without trade-offs. | ERC Advanced... | € 2.293.558 | 2022 | Details |
Twisted nanophotonic technology for integrated chiroptical sensing of drugs on a chipTwistedNano aims to revolutionize drug discovery by developing integrated nanophotonic devices for ultrasensitive chiroptical spectroscopy on microfluidic chips, enhancing chiral sensing and diagnostics. | EIC Pathfinder | € 3.679.925 | 2022 | Details |
Lensless label-free nanoscopy
This project aims to develop deep UV lensless holotomographic nanoscopy for high-resolution, large-field imaging of live cells to enhance understanding of extracellular vesicles as disease biomarkers.
On-chip tomographic microscopy: a paraDIgm Shift for RevolUtionizing lab-on-a-chiP bioimaging technology
DISRUPT aims to revolutionize biomedical imaging with a novel lab-on-chip technology for cost-effective, high-resolution cancer detection and diagnostics using integrated tomographic microscopy and AI.
Nano electro-optomechanical programmable integrated circuits
NEUROPIC aims to develop a programmable photonic chip architecture for diverse applications, leveraging nanoelectromechanical technologies to enhance efficiency and enable neuromorphic computing.
Nanoscale Isotropic 3D Resolution using Omni-view Structured Light Sheet Microscopy
This project aims to revolutionize biological imaging by developing a novel optical architecture for super-resolution microscopy that enhances 3D imaging resolution and sample longevity without trade-offs.
Twisted nanophotonic technology for integrated chiroptical sensing of drugs on a chip
TwistedNano aims to revolutionize drug discovery by developing integrated nanophotonic devices for ultrasensitive chiroptical spectroscopy on microfluidic chips, enhancing chiral sensing and diagnostics.