Fast gated superconducting nanowire camera for multi-functional optical tomograph
This project aims to develop a multifunctional optical tomograph using an innovative light sensor to enhance deep body imaging and monitor organ functionality with 100x improved signal-to-noise ratio.
Projectdetails
Introduction
Traditionally, monitoring of organs and deep body functional imaging is done by ultrasound, X-Rays (including CT), PET, or MRI. These techniques only allow for very limited measurements of functionality, usually combined with exogenous and radioactive agents.
Project Proposal
In this project, we propose an innovative light sensing solution: a fast gated, ultra-high quantum efficiency single-photon sensor. This sensor aims to enable multi-functional deep body imaging with diffuse optics.
Sensor Technology
The new type of sensor is based on superconducting nanowire single-photon detectors, which have shown to be ultra-fast and highly efficient. However, until now, the active area and number of pixels have been limited to micrometers in diameter and tens of pixels.
Overcoming Limitations
We propose the combination of two new readout techniques:
- Optical gating
- Charge coupling
These techniques will help overcome the current limitations and scale to 10,000 pixels and millimeter diameter.
Development Strategies
In addition, we will develop new strategies for performing TD-NIRS and TD-SCOS to utilize this new light sensor optimally with Monte-Carlo simulations.
Implementation and Expected Outcomes
We will implement the new light sensor in an optical tomograph and achieve a 100x improvement of SNR compared to using existing light sensors.
Conclusion
With our proposed Multifunctional Optical Tomograph, we will be able to image deep organ and optical structures and monitor functions including:
- Oxygenation
- Haemodynamics
- Perfusion
- Metabolism
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.495.508 |
Totale projectbegroting | € 2.495.508 |
Tijdlijn
Startdatum | 1-4-2023 |
Einddatum | 31-3-2027 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- SINGLE QUANTUM BVpenvoerder
- FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
- POLITECNICO DI MILANO
- TECHNISCHE UNIVERSITEIT DELFT
- LASERLAB-EUROPE AISBL
- FORSCHUNGSVERBUND BERLIN EV
- UNIVERSITY COLLEGE LONDON
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
NEW TECHNOLOGY FOR 1 MICRON RESOLUTION BIOMEDICAL IMAGINGThe 1MICRON project aims to revolutionize cancer detection by developing high-resolution, integrated x-ray sensors for immediate surgical feedback, potentially saving over 100,000 treatments annually in Europe. | EIC Pathfinder | € 2.999.999 | 2025 | Details |
Single Molecule Nuclear Magnetic Resonance Microscopy for Complex Spin SystemsThis project aims to enhance NMR sensitivity to single molecules using scanning probe microscopy, enabling groundbreaking insights in nanotechnology and impacting NMR and SPM markets. | EIC Pathfinder | € 2.994.409 | 2023 | Details |
On-chip tomographic microscopy: a paraDIgm Shift for RevolUtionizing lab-on-a-chiP bioimaging technologyDISRUPT aims to revolutionize biomedical imaging with a novel lab-on-chip technology for cost-effective, high-resolution cancer detection and diagnostics using integrated tomographic microscopy and AI. | EIC Pathfinder | € 3.018.312 | 2022 | Details |
REAL TIME MOLECULAR IMAGER WITH UNSURPASSED RESOLUTIONRETIMAGER aims to revolutionize PET imaging by achieving ten-fold improvements in spatial and temporal resolution, enabling real-time, high-sensitivity imaging for personalized precision medicine. | EIC Pathfinder | € 3.126.347 | 2023 | Details |
NEW TECHNOLOGY FOR 1 MICRON RESOLUTION BIOMEDICAL IMAGING
The 1MICRON project aims to revolutionize cancer detection by developing high-resolution, integrated x-ray sensors for immediate surgical feedback, potentially saving over 100,000 treatments annually in Europe.
Single Molecule Nuclear Magnetic Resonance Microscopy for Complex Spin Systems
This project aims to enhance NMR sensitivity to single molecules using scanning probe microscopy, enabling groundbreaking insights in nanotechnology and impacting NMR and SPM markets.
On-chip tomographic microscopy: a paraDIgm Shift for RevolUtionizing lab-on-a-chiP bioimaging technology
DISRUPT aims to revolutionize biomedical imaging with a novel lab-on-chip technology for cost-effective, high-resolution cancer detection and diagnostics using integrated tomographic microscopy and AI.
REAL TIME MOLECULAR IMAGER WITH UNSURPASSED RESOLUTION
RETIMAGER aims to revolutionize PET imaging by achieving ten-fold improvements in spatial and temporal resolution, enabling real-time, high-sensitivity imaging for personalized precision medicine.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
3D silicon detector for imaging of diagnostic and therapeutic nuclear medicine radiotracers with outstanding efficiency and high spatial resolution.This project aims to develop a novel molecular imaging instrument using advanced silicon sensors to enhance efficiency and resolution, potentially revolutionizing medical imaging and related research fields. | ERC Advanced... | € 3.351.875 | 2024 | Details |
Time-based single molecule nanolocalization for live cell imagingThe project aims to develop a novel live-cell nanoscopy technique that enables high-speed, high-resolution imaging of biological processes at the nanoscale without compromising depth or volume. | ERC Advanced... | € 2.498.196 | 2023 | Details |
All-optical photoacoustic imaging for neurobiologyDeveloping advanced sensors for high-speed, high-sensitivity photoacoustic imaging to non-invasively capture single-neuron activity deep in the mouse brain. | ERC Starting... | € 1.499.667 | 2024 | Details |
Photonic chip based high-throughput, multi-modal and scalable optical nanoscopy platformNanoVision aims to revolutionize optical nanoscopy with an affordable, compact, and high-throughput photonic-chip solution, enhancing accessibility and flexibility for research and clinical labs. | EIC Transition | € 2.489.571 | 2022 | Details |
In vivo Immunofluorescence-Optical Coherence TomographyDevelop a high-resolution endoscopic imaging system combining Optical Coherence Tomography and fluorescent antibodies for improved diagnosis and treatment of esophageal cancer and lung disease. | ERC Advanced... | € 2.500.000 | 2025 | Details |
3D silicon detector for imaging of diagnostic and therapeutic nuclear medicine radiotracers with outstanding efficiency and high spatial resolution.
This project aims to develop a novel molecular imaging instrument using advanced silicon sensors to enhance efficiency and resolution, potentially revolutionizing medical imaging and related research fields.
Time-based single molecule nanolocalization for live cell imaging
The project aims to develop a novel live-cell nanoscopy technique that enables high-speed, high-resolution imaging of biological processes at the nanoscale without compromising depth or volume.
All-optical photoacoustic imaging for neurobiology
Developing advanced sensors for high-speed, high-sensitivity photoacoustic imaging to non-invasively capture single-neuron activity deep in the mouse brain.
Photonic chip based high-throughput, multi-modal and scalable optical nanoscopy platform
NanoVision aims to revolutionize optical nanoscopy with an affordable, compact, and high-throughput photonic-chip solution, enhancing accessibility and flexibility for research and clinical labs.
In vivo Immunofluorescence-Optical Coherence Tomography
Develop a high-resolution endoscopic imaging system combining Optical Coherence Tomography and fluorescent antibodies for improved diagnosis and treatment of esophageal cancer and lung disease.