Single-Molecule Acousto-Photonic Nanofluidics
SIMPHONICS aims to develop a high-throughput, non-invasive platform for protein fingerprinting by integrating nanopore technology with acoustic manipulation and fluorescence detection.
Projectdetails
Introduction
Reading biomolecular signatures and understanding their role in health and disease is one of the greatest scientific challenges in genome and proteome biology. Yet, complete protein analysis at the single-molecule level remains an unmet milestone. This pursuit is fundamentally hindered by the huge dynamic range of protein expression in cells and the insufficient spatio-temporal resolution of current analysis methods.
Need for Advanced Techniques
Next-generation single-molecule techniques that can precisely manipulate and sequence proteins in space and time are urgently needed to reach this goal. Among these, nanopore platforms are at the forefront, leading in terms of read length, throughput, and sensitivity. However, the major challenges associated with translocation speed control and the precise readout in solid-state nanopore devices remain prohibitive.
Project Overview
In SIMPHONICS, I will resolve these issues by developing the first integrated platform that combines nanopore transport measurements, spatially modulated acoustic wavefields, and single-molecule fluorescence time traces to confine, scan, and optically fingerprint proteins in a non-invasive and massively parallel manner.
Objectives
The feasibility of this method will be established by attaining three main objectives:
- Confining and controllably manipulating individual molecules using acoustic nanotweezers.
- On-demand engineering of 2D material optical emitters as ultrabright fluorescent probes for energy transfer-based detection.
- Identifying proteins/peptides from their optical signatures in multi-color Förster resonance energy transfer (FRET) during acoustophoresis.
Expected Outcomes
With this powerful and unique platform, I will harness the vast potential of acousto-photonic interactions in monolithic nanopore devices. Successful achievement of the project objectives will result in a high-throughput and non-destructive protein fingerprinting platform and signify a considerable leap forward in our quest to unravel the human proteome.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.395 |
Totale projectbegroting | € 1.499.395 |
Tijdlijn
Startdatum | 1-6-2022 |
Einddatum | 31-5-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- TECHNISCHE UNIVERSITEIT DELFTpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Time-based single molecule nanolocalization for live cell imagingThe project aims to develop a novel live-cell nanoscopy technique that enables high-speed, high-resolution imaging of biological processes at the nanoscale without compromising depth or volume. | ERC Advanced... | € 2.498.196 | 2023 | Details |
A new technology to probe molecular interaction in cells at high throughputThe DiffusOMICS project aims to develop a high-throughput fluorescence-based method to map molecular interactions and detect protein aggregates in neurons for improved drug screening. | ERC Proof of... | € 150.000 | 2024 | Details |
measuriNg nEURal dynamics with label-free OpticaL multI-DomAin RecordingsThis project aims to innovate label-free optical methods for monitoring neural dynamics in the brain, enhancing understanding and treatment of brain diseases without exogenous reporters. | ERC Starting... | € 1.634.825 | 2025 | Details |
Optical Sequencing inside Live Cells with Biointegrated NanolasersHYPERION aims to revolutionize intracellular biosensing by using plasmonic nanolasers for real-time detection of RNA, enhancing our understanding of molecular processes in living cells. | ERC Starting... | € 1.577.695 | 2022 | Details |
All-optical photoacoustic imaging for neurobiologyDeveloping advanced sensors for high-speed, high-sensitivity photoacoustic imaging to non-invasively capture single-neuron activity deep in the mouse brain. | ERC Starting... | € 1.499.667 | 2024 | Details |
Time-based single molecule nanolocalization for live cell imaging
The project aims to develop a novel live-cell nanoscopy technique that enables high-speed, high-resolution imaging of biological processes at the nanoscale without compromising depth or volume.
A new technology to probe molecular interaction in cells at high throughput
The DiffusOMICS project aims to develop a high-throughput fluorescence-based method to map molecular interactions and detect protein aggregates in neurons for improved drug screening.
measuriNg nEURal dynamics with label-free OpticaL multI-DomAin Recordings
This project aims to innovate label-free optical methods for monitoring neural dynamics in the brain, enhancing understanding and treatment of brain diseases without exogenous reporters.
Optical Sequencing inside Live Cells with Biointegrated Nanolasers
HYPERION aims to revolutionize intracellular biosensing by using plasmonic nanolasers for real-time detection of RNA, enhancing our understanding of molecular processes in living cells.
All-optical photoacoustic imaging for neurobiology
Developing advanced sensors for high-speed, high-sensitivity photoacoustic imaging to non-invasively capture single-neuron activity deep in the mouse brain.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Computation driven development of novel vivo-like-DNA-nanotransducers for biomolecules structure identificationThis project aims to develop DNA-nanotransducers for real-time detection and analysis of conformational changes in biomolecules, enhancing understanding of molecular dynamics and aiding drug discovery. | EIC Pathfinder | € 3.000.418 | 2022 | Details |
Single Molecule Nuclear Magnetic Resonance Microscopy for Complex Spin SystemsThis project aims to enhance NMR sensitivity to single molecules using scanning probe microscopy, enabling groundbreaking insights in nanotechnology and impacting NMR and SPM markets. | EIC Pathfinder | € 2.994.409 | 2023 | Details |
Haalbaarheidsonderzoek: portable nanopore device voor de identificatie van eiwitten en biomarkers.Portal Biotech ontwikkelt een draagbaar analysetoestel op basis van nanopore technologie om real-time eiwitmetingen mogelijk te maken, wat de diagnostiek revolutionair verandert. | Mkb-innovati... | € 20.000 | 2022 | Details |
Revolutionizing Spatial Biology with a cutting-edge Multi-Scale Imaging platformThe NanoSCAN project aims to develop the SAFe-nSCAN platform for high-resolution 3D tissue analysis, enhancing molecular profiling and advancing personalized therapies in immuno-oncology. | EIC Transition | € 2.489.162 | 2023 | Details |
Versatile Amplification Method for Single-Molecule Detection in Liquid BiopsyVerSiLiB aims to develop an enzyme-free amplification platform for detecting proteins and nucleic acids in liquid biopsies, enhancing cancer management through novel affinity-mediated transport. | EIC Pathfinder | € 2.994.244 | 2022 | Details |
Computation driven development of novel vivo-like-DNA-nanotransducers for biomolecules structure identification
This project aims to develop DNA-nanotransducers for real-time detection and analysis of conformational changes in biomolecules, enhancing understanding of molecular dynamics and aiding drug discovery.
Single Molecule Nuclear Magnetic Resonance Microscopy for Complex Spin Systems
This project aims to enhance NMR sensitivity to single molecules using scanning probe microscopy, enabling groundbreaking insights in nanotechnology and impacting NMR and SPM markets.
Haalbaarheidsonderzoek: portable nanopore device voor de identificatie van eiwitten en biomarkers.
Portal Biotech ontwikkelt een draagbaar analysetoestel op basis van nanopore technologie om real-time eiwitmetingen mogelijk te maken, wat de diagnostiek revolutionair verandert.
Revolutionizing Spatial Biology with a cutting-edge Multi-Scale Imaging platform
The NanoSCAN project aims to develop the SAFe-nSCAN platform for high-resolution 3D tissue analysis, enhancing molecular profiling and advancing personalized therapies in immuno-oncology.
Versatile Amplification Method for Single-Molecule Detection in Liquid Biopsy
VerSiLiB aims to develop an enzyme-free amplification platform for detecting proteins and nucleic acids in liquid biopsies, enhancing cancer management through novel affinity-mediated transport.