New Adaptive and BUCkling-driven COmposite aerospace structures
The NABUCCO project aims to innovate adaptive, buckling-driven composite structures for aircraft, enhancing efficiency and reducing weight through advanced design and manufacturing techniques.
Projectdetails
Introduction
The NABUCCO project aims to develop radically new concepts of adaptive and buckling-driven composite structures for next generation aircraft. In aeronautics, buckling is generally avoided because it causes stiffness reduction, large deformations, and can result in a catastrophic collapse.
Design Opportunity
Instead, NABUCCO considers buckling no longer as a phenomenon to be avoided, but as a design opportunity to be explored for its ground-breaking potentialities. The idea is to use buckling drawbacks in a positive way, to conceive, design and realize adaptive structures and aircraft morphing wings.
Innovative Structures
These new, lighter, flexible structures will be designed considering all the potentialities offered by composite materials, thanks also to novel manufacturing processes. The project will focus on modifying the boundary conditions to govern when buckling occurs and to tune multiple non-traditional post-buckling stable configurations.
Adaptive Capabilities
These structures will be able to adapt their shape during different flight conditions, acting on two of the biggest levers for the future of clean aviation:
- Reduced weight
- Increased efficiency
Methodological Advancements
The concepts proposed in NABUCCO will require a step change concerning the design, analysis, and optimization methodologies. The design space will be significantly enlarged, and the designer will need the ability to identify, manage, and control the buckling phenomena.
Integrated Design Approach
These solutions can be obtained by adopting an integrated design approach established on multi-disciplinary thinking. A strongly coupled computational-experimental framework will be developed based on:
- Novel analytical formulations
- Artificial intelligence techniques for large multi-objective optimizations
- High-fidelity simulation methodologies
- Advanced test techniques
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.342.038 |
Totale projectbegroting | € 2.342.038 |
Tijdlijn
Startdatum | 1-5-2023 |
Einddatum | 30-4-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- POLITECNICO DI MILANOpenvoerder
- TECHNISCHE UNIVERSITEIT DELFT
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Linking the scales towards non-conventional polymer composite structuresThe project aims to enhance aerospace composite structures by developing a systems-thinking methodology that integrates micro-scale studies with advanced analysis, unlocking new design potentials for efficiency. | ERC Advanced... | € 3.493.788 | 2025 | Details |
Lightweight Vibration Absorption using Buckling MetamaterialsThis project aims to develop lightweight mechanical metamaterials using Euler buckling to create high-damping, high-stiffness vibration absorbers for aerospace and high-tech applications. | ERC Proof of... | € 150.000 | 2024 | Details |
Dynamic control of Gaussian morphing structures via embedded fluidic networksThe project aims to create fully controllable shape-morphing materials using hybrid elastic plates with fluid-filled cavities, enabling precise programming of shape, mechanics, and deformation dynamics for biomedical applications. | ERC Starting... | € 1.499.601 | 2025 | Details |
Data-Driven Bioinspired Design of Fatigue Super-Resistant Structures: learning by Nature and Flying into the futureButterFly aims to revolutionize fatigue design by developing a novel mechanistic approach inspired by natural materials' durability, enhancing structural integrity in industrial applications. | ERC Advanced... | € 2.499.811 | 2023 | Details |
The Delft Laminar Hump: A novel local surface geometry for passive laminarization of aircraft wingsThe Delft Laminar Hump project aims to develop a cost-effective, passive wing modification to enhance laminar flow, reducing aircraft drag and emissions, and facilitating industrial adoption. | ERC Proof of... | € 150.000 | 2024 | Details |
Linking the scales towards non-conventional polymer composite structures
The project aims to enhance aerospace composite structures by developing a systems-thinking methodology that integrates micro-scale studies with advanced analysis, unlocking new design potentials for efficiency.
Lightweight Vibration Absorption using Buckling Metamaterials
This project aims to develop lightweight mechanical metamaterials using Euler buckling to create high-damping, high-stiffness vibration absorbers for aerospace and high-tech applications.
Dynamic control of Gaussian morphing structures via embedded fluidic networks
The project aims to create fully controllable shape-morphing materials using hybrid elastic plates with fluid-filled cavities, enabling precise programming of shape, mechanics, and deformation dynamics for biomedical applications.
Data-Driven Bioinspired Design of Fatigue Super-Resistant Structures: learning by Nature and Flying into the future
ButterFly aims to revolutionize fatigue design by developing a novel mechanistic approach inspired by natural materials' durability, enhancing structural integrity in industrial applications.
The Delft Laminar Hump: A novel local surface geometry for passive laminarization of aircraft wings
The Delft Laminar Hump project aims to develop a cost-effective, passive wing modification to enhance laminar flow, reducing aircraft drag and emissions, and facilitating industrial adoption.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Brandnetelvezel composiet; Een golfslagbrekende innovatieDit project ontwikkelt een recyclebaar biobased composiet voor schokdempende onderstellen in hoge snelheidsboten, ter vermindering van rugklachten. | Mkb-innovati... | € 153.230 | 2021 | Details |
CARBon-negative COMpression dominant structures for decarbonized and deconstructable CONcrete buildingsCARBCOMN aims to revolutionize zero-carbon concrete structures through innovative digital design and carbon-negative materials, enhancing sustainability and circularity in construction. | EIC Pathfinder | € 3.603.457 | 2024 | Details |
Digital design and robotic fabrication of biofoams for adaptive mono-material architectureThe ARCHIBIOFOAM project aims to develop multifunctional, 3D-printable biofoams with programmable properties for sustainable architecture, enhancing performance while reducing CO2 emissions. | EIC Pathfinder | € 3.422.982 | 2024 | Details |
Automatisch & duurzaam composiet productieproces (Auduco)Het project richt zich op het ontwikkelen van een geautomatiseerd, duurzaam composiet productieproces met circulaire oplossingen voor composietafval, gericht op kosten-efficiëntie en milieuvriendelijkheid. | Mkb-innovati... | € 200.000 | 2017 | Details |
Bioinspired Electroactive Aeronautical multiscale LIVE-skinThe BEALIVE project develops a bio-inspired live skin for air-vehicles that enhances aerodynamic performance and reduces noise through advanced electroactive materials and real-time AI optimization. | EIC Pathfinder | € 2.495.445 | 2023 | Details |
Brandnetelvezel composiet; Een golfslagbrekende innovatie
Dit project ontwikkelt een recyclebaar biobased composiet voor schokdempende onderstellen in hoge snelheidsboten, ter vermindering van rugklachten.
CARBon-negative COMpression dominant structures for decarbonized and deconstructable CONcrete buildings
CARBCOMN aims to revolutionize zero-carbon concrete structures through innovative digital design and carbon-negative materials, enhancing sustainability and circularity in construction.
Digital design and robotic fabrication of biofoams for adaptive mono-material architecture
The ARCHIBIOFOAM project aims to develop multifunctional, 3D-printable biofoams with programmable properties for sustainable architecture, enhancing performance while reducing CO2 emissions.
Automatisch & duurzaam composiet productieproces (Auduco)
Het project richt zich op het ontwikkelen van een geautomatiseerd, duurzaam composiet productieproces met circulaire oplossingen voor composietafval, gericht op kosten-efficiëntie en milieuvriendelijkheid.
Bioinspired Electroactive Aeronautical multiscale LIVE-skin
The BEALIVE project develops a bio-inspired live skin for air-vehicles that enhances aerodynamic performance and reduces noise through advanced electroactive materials and real-time AI optimization.