Dynamic control of Gaussian morphing structures via embedded fluidic networks
The project aims to create fully controllable shape-morphing materials using hybrid elastic plates with fluid-filled cavities, enabling precise programming of shape, mechanics, and deformation dynamics for biomedical applications.
Projectdetails
Introduction
Transforming a flat plate into a doubly curved shell is not possible without distorting in-plane distances, as stated by Gauss in his seminal theorem. In natural morphogenesis, this strong geometrical constraint is overcome by differential growth in the tissues, which induces mechanical stresses and thus the buckling in a rich variety of shapes.
Background
Over the last decade, emerging approaches have embraced this paradigm to develop bioinspired synthetic responsive materials with in-plane distortions, and hence shape-morphing capabilities. However, despite rapid developments, current efforts primarily focus on programming the final equilibrium shape, overlooking the dynamical trajectory of the transformation and the mechanics of the morphed structure. As a result, exciting biomedical applications in minimally invasive surgery, rehabilitation, and soft robotics remain so far elusive.
Objectives
Here, I aim to develop structures in which the shape, but also the mechanics and the dynamical deformation trajectory may be programmed in time. To do so, I propose to develop hybrid elastic plates embedding a network of fluid-filled cavities.
Design Principles
-
Generalization of Design Principles:
- I will generalize design principles to create unit cells that dispose of all six deformation modes (both in-plane and out-of-plane) when pressurized.
- Assembling such cells will enable univocal shape selection but also internal degrees of freedom to control the frustrated mechanics.
-
Coupling Mechanisms:
- I will unravel the coupling between fluid viscosity and cavity geometry to spatially control the homogenized viscoelastic property of the material.
- The subsequent timescales will be used to program the dynamical deformation trajectory of the structure when submitted to a mechanical or fluidic load.
Conclusion
Taken together, I propose to develop new experimental standards and theoretical frameworks to pave the way for the first fully controllable shape-morphing materials, with applications for adaptive peristaltic endotracheal cuffs in view.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.601 |
Totale projectbegroting | € 1.499.601 |
Tijdlijn
Startdatum | 1-1-2025 |
Einddatum | 31-12-2029 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Morphing tubular structures for adaptive biomedical devicesStripe-oMorph aims to develop adaptable, bio-inspired morphing tubular structures for interventional medical devices, enhancing their compatibility with complex geometries and patient-specific needs. | ERC Proof of... | € 150.000 | 2022 | Details |
Engineering the Origin of Human Shape: Defining Patterns and Axes in the Early Stage of 3D PluripotencyOriSha aims to revolutionize in vitro human embryonic development modeling by using a hydrogel-microfluidic system to control biochemical signals for studying neural tube morphogenesis. | ERC Starting... | € 1.499.633 | 2024 | Details |
4D bioprinting shape-morphing tissues using phototunable supramolecular hydrogelsmorphoPRINT aims to develop a dynamic hydrogel platform for bioprinted tissues that enables programmable shape-morphing, facilitating the creation of functional organs through controlled volumetric growth. | ERC Starting... | € 1.499.906 | 2023 | Details |
Life-inspired physical feedback coupling in multidimensional hydrogelsDIMENSION aims to develop coupled feedback loops in multidimensional hydrogels to create self-regulated, adaptive materials with advanced functionalities for various applications. | ERC Starting... | € 1.500.000 | 2025 | Details |
Engineering soft microdevices for the mechanical characterization and stimulation of microtissuesThis project aims to advance mechanobiology by developing soft robotic micro-devices to study and manipulate 3D tissue responses, enhancing understanding of cell behavior and potential cancer treatments. | ERC Advanced... | € 3.475.660 | 2025 | Details |
Morphing tubular structures for adaptive biomedical devices
Stripe-oMorph aims to develop adaptable, bio-inspired morphing tubular structures for interventional medical devices, enhancing their compatibility with complex geometries and patient-specific needs.
Engineering the Origin of Human Shape: Defining Patterns and Axes in the Early Stage of 3D Pluripotency
OriSha aims to revolutionize in vitro human embryonic development modeling by using a hydrogel-microfluidic system to control biochemical signals for studying neural tube morphogenesis.
4D bioprinting shape-morphing tissues using phototunable supramolecular hydrogels
morphoPRINT aims to develop a dynamic hydrogel platform for bioprinted tissues that enables programmable shape-morphing, facilitating the creation of functional organs through controlled volumetric growth.
Life-inspired physical feedback coupling in multidimensional hydrogels
DIMENSION aims to develop coupled feedback loops in multidimensional hydrogels to create self-regulated, adaptive materials with advanced functionalities for various applications.
Engineering soft microdevices for the mechanical characterization and stimulation of microtissues
This project aims to advance mechanobiology by developing soft robotic micro-devices to study and manipulate 3D tissue responses, enhancing understanding of cell behavior and potential cancer treatments.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Smart 4D biodegradable metallic shape-shifting implants for dynamic tissue restorationBIOMET4D aims to revolutionize reconstructive surgery with shape-morphing implants for dynamic tissue restoration, enhancing regeneration while reducing costs and invasiveness. | EIC Pathfinder | € 4.039.541 | 2022 | Details |
Mimicking Adaptation and Plasticity in WORMSMAPWORMS aims to develop bio-inspired, shape-morphing robots using smart hydrogels that adapt to environmental stimuli, enhancing robotics through biological principles and advanced materials. | EIC Pathfinder | € 2.896.750 | 2022 | Details |
Smart 4D biodegradable metallic shape-shifting implants for dynamic tissue restoration
BIOMET4D aims to revolutionize reconstructive surgery with shape-morphing implants for dynamic tissue restoration, enhancing regeneration while reducing costs and invasiveness.
Mimicking Adaptation and Plasticity in WORMS
MAPWORMS aims to develop bio-inspired, shape-morphing robots using smart hydrogels that adapt to environmental stimuli, enhancing robotics through biological principles and advanced materials.