Lightweight Vibration Absorption using Buckling Metamaterials
This project aims to develop lightweight mechanical metamaterials using Euler buckling to create high-damping, high-stiffness vibration absorbers for aerospace and high-tech applications.
Projectdetails
Introduction
Vibrations cause unwanted noise and even failure in many areas, including vehicles such as spacecraft, road vehicles, and trains, as well as sensitive optical or high-tech instruments and machinery. The market size for global vibration control systems was valued at 4.7 billion dollars in 2021 and is expected to expand to 8.1 billion dollars in 2030. This increase in demand is driven by a growing emphasis on the mechanical stability and balancing of industrial machines, which require ever-growing precision, and vehicles, which require ever-growing safety.
Strategies for Vibration Control
To counter these vibrations, many strategies have been developed. Some of the common approaches include:
-
Viscoelastic Materials: One of the easiest ways to mitigate vibrations. However, there is typically an inherent trade-off: high dissipation entails low stiffness, whereas many applications typically require both high dissipation and high specific stiffness.
-
Active Vibration Damping: This approach involves using systems that actively dampen vibrations. However, these systems typically add an additional layer of complexity and weight.
Proposed Solution
Here, we propose to use Euler buckling as a functional mechanism to create vibration absorbers. Buckling structures are simultaneously stiff and highly dissipative due to their high stiffness prior to buckling and highly nonlinear force and damping response during post-buckling.
Implementation
To this end, we will use flexible mechanical metamaterials made of metal and fibre-reinforced composites with tailored buckling and post-buckling characteristics. We will establish such metamaterials as a prime avenue to create lightweight structures that are orders of magnitude more dissipative than their linear viscoelastic counterparts.
Potential Impact
We will hence establish their potential as a competitive solution for lightweight structures combining high damping and high specific stiffness in high-tech and aerospace applications. In particular, our metamaterials will allow for the reduction of weight and increase the damping of energy-absorbing components in vehicles, thereby reducing their overall weight.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-1-2024 |
Einddatum | 30-6-2025 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- UNIVERSITEIT VAN AMSTERDAMpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Scaling up dissipative metamaterials for energy absorption applicationsDeveloping lightweight mechanical metamaterials to enhance battery box safety in electric vehicles, reducing fire risk and CO2 footprint while enabling broader industrial applications. | ERC Proof of... | € 150.000 | 2025 | Details |
New Adaptive and BUCkling-driven COmposite aerospace structuresThe NABUCCO project aims to innovate adaptive, buckling-driven composite structures for aircraft, enhancing efficiency and reducing weight through advanced design and manufacturing techniques. | ERC Advanced... | € 2.342.038 | 2023 | Details |
Beyond hyperelasticity: a virgin land of extreme materialsThis project aims to develop advanced materials that surpass traditional elastic limits, enabling energy harvesting and innovative applications in technology and medicine through extreme deformation mechanics. | ERC Advanced... | € 2.476.084 | 2022 | Details |
Non-Hermitian elastodynamicsThis project aims to engineer metamaterials for precise control of elastic waves by leveraging non-Hermitian quantum mechanics and elastodynamics, unlocking novel phenomena for advanced engineering applications. | ERC Consolid... | € 1.594.166 | 2022 | Details |
Metamaterials for Laminar Flow Control on a WingMetaWing aims to develop metamaterials to control wave-like instabilities in laminar flows, reducing aircraft drag and emissions by delaying the transition to turbulence. | ERC Consolid... | € 2.374.014 | 2024 | Details |
Scaling up dissipative metamaterials for energy absorption applications
Developing lightweight mechanical metamaterials to enhance battery box safety in electric vehicles, reducing fire risk and CO2 footprint while enabling broader industrial applications.
New Adaptive and BUCkling-driven COmposite aerospace structures
The NABUCCO project aims to innovate adaptive, buckling-driven composite structures for aircraft, enhancing efficiency and reducing weight through advanced design and manufacturing techniques.
Beyond hyperelasticity: a virgin land of extreme materials
This project aims to develop advanced materials that surpass traditional elastic limits, enabling energy harvesting and innovative applications in technology and medicine through extreme deformation mechanics.
Non-Hermitian elastodynamics
This project aims to engineer metamaterials for precise control of elastic waves by leveraging non-Hermitian quantum mechanics and elastodynamics, unlocking novel phenomena for advanced engineering applications.
Metamaterials for Laminar Flow Control on a Wing
MetaWing aims to develop metamaterials to control wave-like instabilities in laminar flows, reducing aircraft drag and emissions by delaying the transition to turbulence.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Brandnetelvezel composiet; Een golfslagbrekende innovatieDit project ontwikkelt een recyclebaar biobased composiet voor schokdempende onderstellen in hoge snelheidsboten, ter vermindering van rugklachten. | Mkb-innovati... | € 153.230 | 2021 | Details |
CONSTRAINT LAYER DAMPINGDe aanvrager voert een haalbaarheidsstudie uit naar een nieuwe methode voor actieve demping van trillingen in staalconstructies, gericht op het verbeteren van dempingsprestaties zonder negatieve effecten. | Mkb-innovati... | € 20.000 | 2021 | Details |
ONTWIKKELING EN PRODUCTIE VAN PARABOLISCHE FOTOVOLTAÏSCHE DIFFRACTORENHet project ontwikkelt duurzame parabolische fotovoltaïsche diffractoren voor geluidsreductie met herbruikbare materialen, gericht op energieopbrengst en circulaire oplossingen in het publieke domein. | Mkb-innovati... | € 200.550 | 2021 | Details |
UV Curable Bamboo FibersDit project ontwikkelt een innovatieve bamboedraad door mechanische vezelbinding en poedercoating, gericht op duurzame composiettoepassingen met een lage CO2-uitstoot. | Mkb-innovati... | € 194.005 | 2019 | Details |
Bioinspired cellular actuatorsBiCeps aims to create robust, muscle-inspired actuators using multi-material additive manufacturing to revolutionize mechanical motion and replace traditional motors across various sectors. | EIC Pathfinder | € 2.894.306 | 2025 | Details |
Brandnetelvezel composiet; Een golfslagbrekende innovatie
Dit project ontwikkelt een recyclebaar biobased composiet voor schokdempende onderstellen in hoge snelheidsboten, ter vermindering van rugklachten.
CONSTRAINT LAYER DAMPING
De aanvrager voert een haalbaarheidsstudie uit naar een nieuwe methode voor actieve demping van trillingen in staalconstructies, gericht op het verbeteren van dempingsprestaties zonder negatieve effecten.
ONTWIKKELING EN PRODUCTIE VAN PARABOLISCHE FOTOVOLTAÏSCHE DIFFRACTOREN
Het project ontwikkelt duurzame parabolische fotovoltaïsche diffractoren voor geluidsreductie met herbruikbare materialen, gericht op energieopbrengst en circulaire oplossingen in het publieke domein.
UV Curable Bamboo Fibers
Dit project ontwikkelt een innovatieve bamboedraad door mechanische vezelbinding en poedercoating, gericht op duurzame composiettoepassingen met een lage CO2-uitstoot.
Bioinspired cellular actuators
BiCeps aims to create robust, muscle-inspired actuators using multi-material additive manufacturing to revolutionize mechanical motion and replace traditional motors across various sectors.