Linking the scales towards non-conventional polymer composite structures
The project aims to enhance aerospace composite structures by developing a systems-thinking methodology that integrates micro-scale studies with advanced analysis, unlocking new design potentials for efficiency.
Projectdetails
Introduction
The reduction of the environmental footprint of aviation relies on the development and fast deployment of lighter and more efficient polymer composite structures. However, the current configurations of composite aerospace structures result in a highly constrained design space.
Limitations of Current Methods
Additionally, the limitations of the state-of-the-art analysis methods result in overly conservative designs and in time-consuming certification methodologies. As a result, composite laminates have only contributed to modest weight savings in aircraft structures.
Project Objective
Based on these observations, the main objective of the project is to unleash the full potential of composite systems to yield more efficient aerospace composite structures. The premise is that polymer composite laminates are far from being used to their full potential, and that significant performance improvements of composite aerospace structures can be obtained by developing a new systems-thinking methodology that will link the different scales of a composite system.
Methodology
The methodology relies on the combination of new experimental studies, conducted at the micro-scale of the composite material, that will guide the development of analysis methods at different spatial scales. The theoretical developments, guided by experiments and computations, will create the building blocks of a neural network that will unravel the currently hidden relations between:
- Manufacturing conditions
- Micro- and meso-structures of a composite material
- Performance of a composite structure
Expected Outcomes
Overcoming this knowledge gap will enable the development of new, non-conventional micro-structures using different types of reinforcing fibres, and of new laminate configurations that will not be restrained by a limited set of fibre orientation angles.
It is expected that, for the first time, the discontinuity between material design and structural design will be removed, opening new avenues for concurrent optimization of composite materials and structures.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 3.493.788 |
Totale projectbegroting | € 3.493.788 |
Tijdlijn
Startdatum | 1-1-2025 |
Einddatum | 31-12-2029 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- INEGI - INSTITUTO DE CIENCIA E INOVACAO EM ENGENHARIA MECANICA E ENGENHARIA INDUSTRIALpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
New Adaptive and BUCkling-driven COmposite aerospace structuresThe NABUCCO project aims to innovate adaptive, buckling-driven composite structures for aircraft, enhancing efficiency and reducing weight through advanced design and manufacturing techniques. | ERC Advanced... | € 2.342.038 | 2023 | Details |
Programmable interfaces: towards reliable and recyclable composite materials via debonding on demandThe project aims to develop "programmable interfaces" for metal-polymer composites that enhance adhesion during use and enable controlled debonding for improved recyclability and sustainability. | ERC Starting... | € 1.499.972 | 2025 | Details |
Additive Manufacturing of Living Composite MaterialsThis project aims to create living composites by integrating biological systems into engineering materials, enhancing adaptability, healing, and performance through innovative fabrication techniques. | ERC Consolid... | € 1.999.491 | 2023 | Details |
Data-Driven Bioinspired Design of Fatigue Super-Resistant Structures: learning by Nature and Flying into the futureButterFly aims to revolutionize fatigue design by developing a novel mechanistic approach inspired by natural materials' durability, enhancing structural integrity in industrial applications. | ERC Advanced... | € 2.499.811 | 2023 | Details |
New Adaptive and BUCkling-driven COmposite aerospace structures
The NABUCCO project aims to innovate adaptive, buckling-driven composite structures for aircraft, enhancing efficiency and reducing weight through advanced design and manufacturing techniques.
Programmable interfaces: towards reliable and recyclable composite materials via debonding on demand
The project aims to develop "programmable interfaces" for metal-polymer composites that enhance adhesion during use and enable controlled debonding for improved recyclability and sustainability.
Additive Manufacturing of Living Composite Materials
This project aims to create living composites by integrating biological systems into engineering materials, enhancing adaptability, healing, and performance through innovative fabrication techniques.
Data-Driven Bioinspired Design of Fatigue Super-Resistant Structures: learning by Nature and Flying into the future
ButterFly aims to revolutionize fatigue design by developing a novel mechanistic approach inspired by natural materials' durability, enhancing structural integrity in industrial applications.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Materials, 2D-3D flattening and Processing, to optimize the topology and create breakthrough zero-waste Composite structural solutionsThe ZeroWasteLIFE project aims to enhance the sustainability of composite materials through innovative design and recycling methods, targeting significant reductions in energy use and emissions. | LIFE Standar... | € 1.812.848 | 2023 | Details |
C.L.A.R.A. (Composite Line Assessment with Remote Analysis)Het project ontwikkelt een innovatieve, efficiënte NDT-inspectiemethode voor composiet vliegtuigonderdelen, waardoor experts op afstand defecten kunnen beoordelen en de veiligheid in de luchtvaart verbetert. | Mkb-innovati... | € 199.591 | 2023 | Details |
Hergebruik en hoogwaardige recyclage voor vezelversterkte thermohardersHet project onderzoekt de haalbaarheid van hergebruik en recycling van thermohardend composiet voor duurzame toepassingen en vermindering van afval. | Mkb-innovati... | € 20.000 | 2020 | Details |
TOOLing materials, design, and process engineering, leading to improved sustainability and wider applications for the composites of tomorrowTOOL4LIFE aims to enhance composite manufacturing sustainability by developing fully recyclable thermoplastic tooling, reducing energy use and CO2 emissions while enabling cost-effective production. | LIFE Standar... | € 2.138.010 | 2022 | Details |
Brandnetelvezel composiet; Een golfslagbrekende innovatieDit project ontwikkelt een recyclebaar biobased composiet voor schokdempende onderstellen in hoge snelheidsboten, ter vermindering van rugklachten. | Mkb-innovati... | € 153.230 | 2021 | Details |
Materials, 2D-3D flattening and Processing, to optimize the topology and create breakthrough zero-waste Composite structural solutions
The ZeroWasteLIFE project aims to enhance the sustainability of composite materials through innovative design and recycling methods, targeting significant reductions in energy use and emissions.
C.L.A.R.A. (Composite Line Assessment with Remote Analysis)
Het project ontwikkelt een innovatieve, efficiënte NDT-inspectiemethode voor composiet vliegtuigonderdelen, waardoor experts op afstand defecten kunnen beoordelen en de veiligheid in de luchtvaart verbetert.
Hergebruik en hoogwaardige recyclage voor vezelversterkte thermoharders
Het project onderzoekt de haalbaarheid van hergebruik en recycling van thermohardend composiet voor duurzame toepassingen en vermindering van afval.
TOOLing materials, design, and process engineering, leading to improved sustainability and wider applications for the composites of tomorrow
TOOL4LIFE aims to enhance composite manufacturing sustainability by developing fully recyclable thermoplastic tooling, reducing energy use and CO2 emissions while enabling cost-effective production.
Brandnetelvezel composiet; Een golfslagbrekende innovatie
Dit project ontwikkelt een recyclebaar biobased composiet voor schokdempende onderstellen in hoge snelheidsboten, ter vermindering van rugklachten.