Whole-organ 3D ultrasound micro-flow imaging: from basics physics to clinical proof-of-concept on cardiac and cerebral diseases
MicroflowLife aims to develop ultrasensitive 3D ultrasound localization microscopy for mapping microcirculation in the heart and brain, enhancing early disease diagnosis and monitoring.
Projectdetails
Introduction
Blood circulation is essential to organ functions and occurs through a complex network of vessels with diameters varying from several millimeters for large arteries to only a few microns for small capillaries. Dysfunctions in the microcirculation are early markers of many diseases, which are however diagnosed at a later stage, when observable symptoms become visible at larger scales.
Importance of Mapping Blood Flows
Mapping blood flows across several spatial scales at depth in organs is therefore crucial for early diagnosis and monitoring of diseases, but it remains a major challenge in clinical medical imaging.
Ultrasound Localization Microscopy (ULM)
Our laboratory, Physics for Medicine Paris, has introduced in 2015 ultrasound localization microscopy (ULM), a non-invasive method to map and quantify blood flows at depth in organs down to a micron scale resolution, opening avenues for medical imaging.
Challenges in 2D ULM
However, 2D ULM is highly operator-dependent because probe positioning is critical to view the appropriate cross-section. Imaging the whole organ in 3D is therefore crucial for clinical practice and for a comprehensive investigation of organ functions.
Challenges in Ultrasound Imaging
Capturing large 3D volumes through the bones, such as the skull or the rib cage, is a further challenge in ultrasound imaging. Acoustic energy losses due to reflection and distortion of ultrasound waves at the bone interface significantly reduce the imaging sensitivity.
Project Objective
The objective of MicroflowLife is to develop ultrasensitive 3D ULM through bones for mapping the microcirculation of the whole heart and the whole brain.
Methodology
Our approach relies on the development of novel ultrasonic multi-lens probes, combined with new acquisition sequences and processing methods.
Validation and Clinical Translation
Our technology and methods will be first validated in vitro and in vivo, and then translated clinically in first-in-human studies.
Applications
Feasibility of cardiac and cerebral applications will be assessed in two morbid diseases associated with microcirculation alteration:
- Coronary microvascular dysfunction
- Brain glioblastoma tumors
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.500.000 |
Totale projectbegroting | € 1.500.000 |
Tijdlijn
Startdatum | 1-9-2022 |
Einddatum | 31-8-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALEpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Super-resolution, ultrafast and deeply-learned contrast ultrasound imaging of the vascular tree.Super-FALCON aims to revolutionize cardiovascular and cancer imaging by using advanced plane-wave ultrasound with microbubbles for precise, high-resolution flow imaging, enhancing diagnosis and treatment. | ERC Starting... | € 1.500.000 | 2023 | Details |
Multiscale Imaging of Cardiovascular Pressure Gradients – a Paradigm Shift in Hemodynamic Risk PredictionThe MultiPRESS project aims to develop a novel non-invasive imaging method for assessing cardiovascular pressure gradients, enhancing diagnosis and risk prediction across various cardiovascular conditions. | ERC Starting... | € 1.621.913 | 2023 | Details |
Unravelling unsteady fluid flows in porous media with 3D X-ray micro-velocimetryFLOWSCOPY aims to revolutionize the understanding of fluid flows in opaque porous materials by developing a fast 3D X-ray imaging method to measure complex flow dynamics at micro and macro scales. | ERC Starting... | € 1.500.000 | 2023 | Details |
Advanced analysis of multiparametric volumetric ultrafast ultrasound: a novel approach for non-invasive breast cancer diagnosisThis project aims to enhance non-invasive breast cancer diagnosis by integrating machine learning with advanced ultrasound techniques to create predictive models for tumor characteristics, reducing reliance on biopsies. | ERC Starting... | € 1.499.498 | 2025 | Details |
MRI-based ID of the Vasculature across the Heart-Brain AxisDeveloping VascularID, a non-invasive MRI tool for assessing cardiac and cerebral microvasculature, to enhance understanding and treatment of heart-brain axis diseases. | ERC Starting... | € 1.852.430 | 2023 | Details |
Super-resolution, ultrafast and deeply-learned contrast ultrasound imaging of the vascular tree.
Super-FALCON aims to revolutionize cardiovascular and cancer imaging by using advanced plane-wave ultrasound with microbubbles for precise, high-resolution flow imaging, enhancing diagnosis and treatment.
Multiscale Imaging of Cardiovascular Pressure Gradients – a Paradigm Shift in Hemodynamic Risk Prediction
The MultiPRESS project aims to develop a novel non-invasive imaging method for assessing cardiovascular pressure gradients, enhancing diagnosis and risk prediction across various cardiovascular conditions.
Unravelling unsteady fluid flows in porous media with 3D X-ray micro-velocimetry
FLOWSCOPY aims to revolutionize the understanding of fluid flows in opaque porous materials by developing a fast 3D X-ray imaging method to measure complex flow dynamics at micro and macro scales.
Advanced analysis of multiparametric volumetric ultrafast ultrasound: a novel approach for non-invasive breast cancer diagnosis
This project aims to enhance non-invasive breast cancer diagnosis by integrating machine learning with advanced ultrasound techniques to create predictive models for tumor characteristics, reducing reliance on biopsies.
MRI-based ID of the Vasculature across the Heart-Brain Axis
Developing VascularID, a non-invasive MRI tool for assessing cardiac and cerebral microvasculature, to enhance understanding and treatment of heart-brain axis diseases.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Remote whole-brain functional microscopy of the vascular system: a paradigm shift for the monitoring and treatment of small vessel diseasesThe project aims to revolutionize neuroimaging by developing functional Ultrasound Localization Microscopy (fULM) for high-resolution monitoring of brain vasculature and function, enhancing disease diagnosis and treatment evaluation. | EIC Pathfinder | € 3.946.172 | 2022 | Details |
Instrument-free 3D molecular imaging with the VOLumetric UMI-Network EXplorerVOLUMINEX aims to revolutionize molecular imaging by providing an affordable 3D sequencing-based microscopy method for comprehensive spatial and transcriptomic data mapping. | EIC Pathfinder | € 2.999.999 | 2025 | Details |
Advancing stroke care with cutting-edge ultrasound biomarkers for Neurocritical CareResolve Stroke aims to enhance ultrasound imaging with the SYLVER system to improve stroke diagnosis and management through innovative biomarkers, making timely detection more accessible and effective. | EIC Transition | € 2.493.436 | 2025 | Details |
De VascoscopeHet project ontwikkelt de VascoScope, een innovatieve echografie-oplossing die verpleegkundigen ondersteunt bij vasculaire toegang, om de efficiëntie en veiligheid van katheterisatie te verbeteren. | Mkb-innovati... | € 197.945 | 2019 | Details |
High-throughput ultrasound-based volumetric 3D printing for tissue engineeringSONOCRAFT aims to revolutionize myocardial cell construct bioprinting by combining rapid volumetric printing with ultrasonic manipulation to create functional cardiac models for drug testing and disease research. | EIC Pathfinder | € 2.999.625 | 2025 | Details |
Remote whole-brain functional microscopy of the vascular system: a paradigm shift for the monitoring and treatment of small vessel diseases
The project aims to revolutionize neuroimaging by developing functional Ultrasound Localization Microscopy (fULM) for high-resolution monitoring of brain vasculature and function, enhancing disease diagnosis and treatment evaluation.
Instrument-free 3D molecular imaging with the VOLumetric UMI-Network EXplorer
VOLUMINEX aims to revolutionize molecular imaging by providing an affordable 3D sequencing-based microscopy method for comprehensive spatial and transcriptomic data mapping.
Advancing stroke care with cutting-edge ultrasound biomarkers for Neurocritical Care
Resolve Stroke aims to enhance ultrasound imaging with the SYLVER system to improve stroke diagnosis and management through innovative biomarkers, making timely detection more accessible and effective.
De Vascoscope
Het project ontwikkelt de VascoScope, een innovatieve echografie-oplossing die verpleegkundigen ondersteunt bij vasculaire toegang, om de efficiëntie en veiligheid van katheterisatie te verbeteren.
High-throughput ultrasound-based volumetric 3D printing for tissue engineering
SONOCRAFT aims to revolutionize myocardial cell construct bioprinting by combining rapid volumetric printing with ultrasonic manipulation to create functional cardiac models for drug testing and disease research.