Multiscale Imaging of Cardiovascular Pressure Gradients – a Paradigm Shift in Hemodynamic Risk Prediction
The MultiPRESS project aims to develop a novel non-invasive imaging method for assessing cardiovascular pressure gradients, enhancing diagnosis and risk prediction across various cardiovascular conditions.
Projectdetails
Introduction
Regional quantification of cardiovascular pressure gradients is critical for diagnosis, treatment planning, and risk prediction of many cardiovascular diseases. Still, for a large number of conditions, non-invasive assessment is obstructed by inherent method limitations, and a wide range of cardiovascular instances exist where regional pressure behavior remains unexplored.
Project Objective
The MultiPRESS project main objective is to develop a novel imaging paradigm for non-invasive assessment of cardiovascular pressure gradients, overcoming critical limitations of existing techniques through a unique multiscale approach.
Goals
Doing so, the MultiPRESS project seeks to:
- Extend non-invasive hemodynamic risk prediction into previously inaccessible cardiovascular domains.
- Advance our knowledge of complex hemodynamic behavior.
- Tackle remaining urgent clinical challenges across the heart, aorta, and brain.
Methodology
Using deep integration of advanced full-field magnetic resonance imaging (4D Flow MRI), super-resolution networks, and physics-informed image processing, a set of core developments will allow for unique, comprehensive image-based pressure gradient assessment across:
- Spatial (big/small vessels)
- Temporal (fast/slow flows)
- Flow (laminar/turbulent) scales
These developments will be consistently validated in dedicated in-silico, in-vitro, and in-vivo cohorts.
Applications
These developments will then be utilized on a set of core applications across:
- Cardiovascular scales (heart/aorta/brain)
This will address urgent clinical challenges and extend image-based pressure gradient quantification through previously inaccessible domains.
Conclusion
Based in a unique multidisciplinary setting at Scandinavia’s largest university hospital, successful delivery of MultiPRESS will represent a paradigm shift in clinical hemodynamic risk prediction and pave the way for new scientific knowledge revitalizing risk stratification of complex cardiovascular disease across the heart, aorta, and brain.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.621.913 |
Totale projectbegroting | € 1.621.913 |
Tijdlijn
Startdatum | 1-5-2023 |
Einddatum | 30-4-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- KAROLINSKA INSTITUTETpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Whole-organ 3D ultrasound micro-flow imaging: from basics physics to clinical proof-of-concept on cardiac and cerebral diseasesMicroflowLife aims to develop ultrasensitive 3D ultrasound localization microscopy for mapping microcirculation in the heart and brain, enhancing early disease diagnosis and monitoring. | ERC Starting... | € 1.500.000 | 2022 | Details |
MRI-based ID of the Vasculature across the Heart-Brain AxisDeveloping VascularID, a non-invasive MRI tool for assessing cardiac and cerebral microvasculature, to enhance understanding and treatment of heart-brain axis diseases. | ERC Starting... | € 1.852.430 | 2023 | Details |
Smart Cardiac Magnetic Resonance Delivering One-Click and Comprehensive Assessment of Cardiovascular DiseasesThe project aims to revolutionize cardiovascular disease diagnosis and treatment by developing a fast, automated cardiac MRI system for comprehensive, one-click imaging and analysis. | ERC Starting... | € 1.498.529 | 2023 | Details |
Super-resolution, ultrafast and deeply-learned contrast ultrasound imaging of the vascular tree.Super-FALCON aims to revolutionize cardiovascular and cancer imaging by using advanced plane-wave ultrasound with microbubbles for precise, high-resolution flow imaging, enhancing diagnosis and treatment. | ERC Starting... | € 1.500.000 | 2023 | Details |
Advanced human models of the heart to understand cardiovascular diseaseHeart2Beat aims to develop innovative 3D human cardiac models using microfluidic technology to enhance understanding and treatment of cardiovascular diseases through personalized medicine. | ERC Advanced... | € 2.500.000 | 2023 | Details |
Whole-organ 3D ultrasound micro-flow imaging: from basics physics to clinical proof-of-concept on cardiac and cerebral diseases
MicroflowLife aims to develop ultrasensitive 3D ultrasound localization microscopy for mapping microcirculation in the heart and brain, enhancing early disease diagnosis and monitoring.
MRI-based ID of the Vasculature across the Heart-Brain Axis
Developing VascularID, a non-invasive MRI tool for assessing cardiac and cerebral microvasculature, to enhance understanding and treatment of heart-brain axis diseases.
Smart Cardiac Magnetic Resonance Delivering One-Click and Comprehensive Assessment of Cardiovascular Diseases
The project aims to revolutionize cardiovascular disease diagnosis and treatment by developing a fast, automated cardiac MRI system for comprehensive, one-click imaging and analysis.
Super-resolution, ultrafast and deeply-learned contrast ultrasound imaging of the vascular tree.
Super-FALCON aims to revolutionize cardiovascular and cancer imaging by using advanced plane-wave ultrasound with microbubbles for precise, high-resolution flow imaging, enhancing diagnosis and treatment.
Advanced human models of the heart to understand cardiovascular disease
Heart2Beat aims to develop innovative 3D human cardiac models using microfluidic technology to enhance understanding and treatment of cardiovascular diseases through personalized medicine.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Remote whole-brain functional microscopy of the vascular system: a paradigm shift for the monitoring and treatment of small vessel diseasesThe project aims to revolutionize neuroimaging by developing functional Ultrasound Localization Microscopy (fULM) for high-resolution monitoring of brain vasculature and function, enhancing disease diagnosis and treatment evaluation. | EIC Pathfinder | € 3.946.172 | 2022 | Details |
Geautomatiseerde bloeddrukmetingHet project onderzoekt de haalbaarheid van continue bloeddrukmeting met innovatieve technologieën voor betere cardiovasculaire zorg. | Mkb-innovati... | € 20.000 | 2022 | Details |
Cardiac-AIHet project ontwikkelt een prototype voor continue, niet-invasieve bloeddrukmeting met AI ter preventie van cardiovasculaire ziekten. | Mkb-innovati... | € 179.806 | 2022 | Details |
PRESSUREHet project ontwikkelt een draadloos systeem voor continue bloeddrukmonitoring om cardiovasculaire ziekten te voorkomen en gezondheidswinst te behalen. | 1.1 - Het ve... | € 989.399 | 2023 | Details |
CardioflowHet CARDIOFLOW-project richt zich op het automatiseren van longitudinaal onderzoek naar cardiovasculaire risico's om efficiëntere data-analyse en betere gezondheidsresultaten te bereiken. | Mkb-innovati... | € 20.000 | 2022 | Details |
Remote whole-brain functional microscopy of the vascular system: a paradigm shift for the monitoring and treatment of small vessel diseases
The project aims to revolutionize neuroimaging by developing functional Ultrasound Localization Microscopy (fULM) for high-resolution monitoring of brain vasculature and function, enhancing disease diagnosis and treatment evaluation.
Geautomatiseerde bloeddrukmeting
Het project onderzoekt de haalbaarheid van continue bloeddrukmeting met innovatieve technologieën voor betere cardiovasculaire zorg.
Cardiac-AI
Het project ontwikkelt een prototype voor continue, niet-invasieve bloeddrukmeting met AI ter preventie van cardiovasculaire ziekten.
PRESSURE
Het project ontwikkelt een draadloos systeem voor continue bloeddrukmonitoring om cardiovasculaire ziekten te voorkomen en gezondheidswinst te behalen.
Cardioflow
Het CARDIOFLOW-project richt zich op het automatiseren van longitudinaal onderzoek naar cardiovasculaire risico's om efficiëntere data-analyse en betere gezondheidsresultaten te bereiken.