Instrument-free 3D molecular imaging with the VOLumetric UMI-Network EXplorer
VOLUMINEX aims to revolutionize molecular imaging by providing an affordable 3D sequencing-based microscopy method for comprehensive spatial and transcriptomic data mapping.
Projectdetails
Introduction
Current molecular imaging and spatial transcriptomics methods are limited in throughput and affordability, and are constrained by inherent 2-dimensionality. We propose the Volumetric UMI Network Explorer (VOLUMINEX), a 3D implementation of sequencing-based microscopy.
Technology Overview
This radical alternative to optical imaging builds spatial molecular maps by sequencing DNA barcode networks where each node is a clonally amplified DNA patch, and each edge indicates inter-node proximity. The resulting network reveals gene identities along with their locations without a reference map.
Proposed Pipeline
We propose an end-to-end pipeline starting with a tissue, followed by enzymatic processing steps, and ending with sequencing and a computational reconstruction to form a molecular image.
Commercial Vision
We envision this procedure as an off-the-shelf commercial kit, offering an inexpensive alternative to advanced imaging instrumentation, expanding access to more researchers and potentially even clinical diagnostic settings.
Team and Partnerships
We are led by a Stockholm-based tech-dev team with seminal contributions to the field of sequencing-based microscopy, and a Stockholm-based company Single Technologies AB with a proprietary 3D sequencing device uniquely suited for validating our technology.
We have partnered with an Utrecht-based team of life scientists to develop and deploy our technology on organoids, a rich controllable model tissue-like system perfect for exploring 3D biological imaging.
Theoretical Foundations
Finally, at the heart of the project are undiscovered laws and physical principles which we aim to uncover and exploit with our Paris-based team of theoreticians, who will develop optimisation, graph theory, and machine learning algorithms to tackle the challenging computational problem of spatial reconstruction presented by sequencing-based microscopy.
Conclusion
Through VOLUMINEX, we aim to kick off a new era of molecular imaging where comprehensive spatial and transcriptomic data is accessible, affordable, and 3-dimensional.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.999.999 |
Totale projectbegroting | € 2.999.999 |
Tijdlijn
Startdatum | 1-3-2025 |
Einddatum | 28-2-2030 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- KUNGLIGA TEKNISKA HOEGSKOLANpenvoerder
- KAROLINSKA INSTITUTET
- SORBONNE UNIVERSITE
- Single Technologies AB
- PRINSES MAXIMA CENTRUM VOOR KINDERONCOLOGIE BV
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Computation driven development of novel vivo-like-DNA-nanotransducers for biomolecules structure identificationThis project aims to develop DNA-nanotransducers for real-time detection and analysis of conformational changes in biomolecules, enhancing understanding of molecular dynamics and aiding drug discovery. | EIC Pathfinder | € 3.000.418 | 2022 | Details |
Computation driven development of novel vivo-like-DNA-nanotransducers for biomolecules structure identification
This project aims to develop DNA-nanotransducers for real-time detection and analysis of conformational changes in biomolecules, enhancing understanding of molecular dynamics and aiding drug discovery.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
The sequencing microscope - a path to look at the molecules of biologyThis project aims to develop a novel technique that uses sequencing data to infer spatial information in tissues, enhancing our understanding of biological systems without advanced microscopy. | ERC Advanced... | € 2.500.000 | 2024 | Details |
Revolutionizing Spatial Biology with a cutting-edge Multi-Scale Imaging platformThe NanoSCAN project aims to develop the SAFe-nSCAN platform for high-resolution 3D tissue analysis, enhancing molecular profiling and advancing personalized therapies in immuno-oncology. | EIC Transition | € 2.489.162 | 2023 | Details |
Nanoscale Isotropic 3D Resolution using Omni-view Structured Light Sheet MicroscopyThis project aims to revolutionize biological imaging by developing a novel optical architecture for super-resolution microscopy that enhances 3D imaging resolution and sample longevity without trade-offs. | ERC Advanced... | € 2.293.558 | 2022 | Details |
Lensless label-free nanoscopyThis project aims to develop deep UV lensless holotomographic nanoscopy for high-resolution, large-field imaging of live cells to enhance understanding of extracellular vesicles as disease biomarkers. | ERC Starting... | € 1.500.000 | 2024 | Details |
Time-based single molecule nanolocalization for live cell imagingThe project aims to develop a novel live-cell nanoscopy technique that enables high-speed, high-resolution imaging of biological processes at the nanoscale without compromising depth or volume. | ERC Advanced... | € 2.498.196 | 2023 | Details |
The sequencing microscope - a path to look at the molecules of biology
This project aims to develop a novel technique that uses sequencing data to infer spatial information in tissues, enhancing our understanding of biological systems without advanced microscopy.
Revolutionizing Spatial Biology with a cutting-edge Multi-Scale Imaging platform
The NanoSCAN project aims to develop the SAFe-nSCAN platform for high-resolution 3D tissue analysis, enhancing molecular profiling and advancing personalized therapies in immuno-oncology.
Nanoscale Isotropic 3D Resolution using Omni-view Structured Light Sheet Microscopy
This project aims to revolutionize biological imaging by developing a novel optical architecture for super-resolution microscopy that enhances 3D imaging resolution and sample longevity without trade-offs.
Lensless label-free nanoscopy
This project aims to develop deep UV lensless holotomographic nanoscopy for high-resolution, large-field imaging of live cells to enhance understanding of extracellular vesicles as disease biomarkers.
Time-based single molecule nanolocalization for live cell imaging
The project aims to develop a novel live-cell nanoscopy technique that enables high-speed, high-resolution imaging of biological processes at the nanoscale without compromising depth or volume.