Advanced analysis of multiparametric volumetric ultrafast ultrasound: a novel approach for non-invasive breast cancer diagnosis
This project aims to enhance non-invasive breast cancer diagnosis by integrating machine learning with advanced ultrasound techniques to create predictive models for tumor characteristics, reducing reliance on biopsies.
Projectdetails
Introduction
Tumour development follows a diversity of complementary biological pathways, including the modification of the tissue structure and vascularization, which are not currently captured by imaging techniques in the clinic. Breast cancer patients undergo a series of imaging sessions using complementary modalities, including ionizing mammographies.
In many cases, this imaging is not precise enough for a diagnosis, so that tissue samples in the form of biopsies are used to further characterize the tumour and determine the appropriate treatment. Beyond the pain and stress associated with biopsies, this complex process is costly and time-consuming, and delays the time to diagnosis.
Current Diagnostic Techniques
Ultrasound B-mode imaging is largely used in the diagnostic process of breast cancer, in part because it is low cost, portable, and largely available, as well as non-ionizing and non-invasive.
Our laboratory, Institute Physics for Medicine Paris, has recently developed several quantitative techniques allowing for the measurement of:
- Tissue stiffness
- Fiber organization
- Vascular mapping
These factors are all relevant to tumour development.
Proposed Approach
In this project, I propose a new approach to diagnosing breast cancer non-invasively by applying machine learning analysis to rich volumetric multiparametric maps of complementary tumour aspects, obtained using these innovative ultrafast ultrasound techniques.
The project will tackle the technological challenge of:
- Integrating these techniques into a common acquisition and analysis framework.
- Collecting a large clinical dataset.
- Developing and validating a predictive malignancy model informing on tumour characteristics for the diagnosis.
Impact
This approach will open the door to fully virtual biopsies, impacting society on a large scale in terms of:
- Cost
- Diagnostic efficacy
- Patient comfort
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.498 |
Totale projectbegroting | € 1.499.498 |
Tijdlijn
Startdatum | 1-1-2025 |
Einddatum | 31-12-2029 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALEpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Deep learning derived mechanical biomarkers for cancer therapy predictionThis project aims to develop a deep learning-based biomarker using ultrasound elastography to predict and monitor cancer treatment responses, particularly targeting tumor stiffness in sarcoma patients. | ERC Proof of... | € 150.000 | 2022 | Details |
Acoustic whole blood imaging flow cytometry for rare cell identificationThis project aims to develop acoustic whole-blood cytometry for accurate detection and monitoring of circulating tumor cells in metastatic breast and prostate cancer, enhancing personalized healthcare. | ERC Proof of... | € 150.000 | 2024 | Details |
Whole-organ 3D ultrasound micro-flow imaging: from basics physics to clinical proof-of-concept on cardiac and cerebral diseasesMicroflowLife aims to develop ultrasensitive 3D ultrasound localization microscopy for mapping microcirculation in the heart and brain, enhancing early disease diagnosis and monitoring. | ERC Starting... | € 1.500.000 | 2022 | Details |
Transformative Pediatric Brain Cancer Imaging using Integrated Biophysics-AI Molecular MRIDevelop a novel AI-driven molecular MRI technology for rapid, noninvasive monitoring of pediatric brain cancer treatment response, enhancing precision medicine and understanding of tumor dynamics. | ERC Starting... | € 1.497.669 | 2024 | Details |
Super-resolution, ultrafast and deeply-learned contrast ultrasound imaging of the vascular tree.Super-FALCON aims to revolutionize cardiovascular and cancer imaging by using advanced plane-wave ultrasound with microbubbles for precise, high-resolution flow imaging, enhancing diagnosis and treatment. | ERC Starting... | € 1.500.000 | 2023 | Details |
Deep learning derived mechanical biomarkers for cancer therapy prediction
This project aims to develop a deep learning-based biomarker using ultrasound elastography to predict and monitor cancer treatment responses, particularly targeting tumor stiffness in sarcoma patients.
Acoustic whole blood imaging flow cytometry for rare cell identification
This project aims to develop acoustic whole-blood cytometry for accurate detection and monitoring of circulating tumor cells in metastatic breast and prostate cancer, enhancing personalized healthcare.
Whole-organ 3D ultrasound micro-flow imaging: from basics physics to clinical proof-of-concept on cardiac and cerebral diseases
MicroflowLife aims to develop ultrasensitive 3D ultrasound localization microscopy for mapping microcirculation in the heart and brain, enhancing early disease diagnosis and monitoring.
Transformative Pediatric Brain Cancer Imaging using Integrated Biophysics-AI Molecular MRI
Develop a novel AI-driven molecular MRI technology for rapid, noninvasive monitoring of pediatric brain cancer treatment response, enhancing precision medicine and understanding of tumor dynamics.
Super-resolution, ultrafast and deeply-learned contrast ultrasound imaging of the vascular tree.
Super-FALCON aims to revolutionize cardiovascular and cancer imaging by using advanced plane-wave ultrasound with microbubbles for precise, high-resolution flow imaging, enhancing diagnosis and treatment.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images. | EIC Pathfinder | € 2.744.300 | 2022 | Details |
Ultrasnelle data-acquisitie met optimale signaal-ruisverhouding ten behoeve van 3D foto-akoestische en echografische mammografieHet project ontwikkelt een innovatieve foto-akoestische mammografie om pijnloze, stralingsvrije borstkankerscreening te bieden, met als doel de diagnose te verbeteren en de methode marktrijp te maken. | Mkb-innovati... | € 161.037 | 2020 | Details |
Multimodal Hypersprectal Imaging and Raman Spectroscopy for Intraoperative Assessment of Breast Tumor Resection MarginsSpectra-BREAST aims to enhance tumor margin assessment in breast conserving surgery using a novel multimodal approach for real-time, accurate feedback, improving patient outcomes and reducing reoperation rates. | EIC Pathfinder | € 2.990.207 | 2024 | Details |
AI-based medical assistant - Herkennen en classificeren van tumoren m.b.v. kunstmatige intelligentieDit project ontwikkelt een geavanceerde beeldherkenningstechnologie voor realtime screening van eiwittypologieën in biopten, om de behandeling van complexe tumoren te verbeteren. | Mkb-innovati... | € 200.000 | 2018 | Details |
Elastografie voor snellere herkenning van borstkanker in 3D foto-akoestische mammografieHet project richt zich op het versnellen van borstkankerdiagnose door elastografie te integreren in 3D foto-akoestische mammografie. | 1.1 - RSO1.1... | € 904.954 | 2024 | Details |
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.
The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images.
Ultrasnelle data-acquisitie met optimale signaal-ruisverhouding ten behoeve van 3D foto-akoestische en echografische mammografie
Het project ontwikkelt een innovatieve foto-akoestische mammografie om pijnloze, stralingsvrije borstkankerscreening te bieden, met als doel de diagnose te verbeteren en de methode marktrijp te maken.
Multimodal Hypersprectal Imaging and Raman Spectroscopy for Intraoperative Assessment of Breast Tumor Resection Margins
Spectra-BREAST aims to enhance tumor margin assessment in breast conserving surgery using a novel multimodal approach for real-time, accurate feedback, improving patient outcomes and reducing reoperation rates.
AI-based medical assistant - Herkennen en classificeren van tumoren m.b.v. kunstmatige intelligentie
Dit project ontwikkelt een geavanceerde beeldherkenningstechnologie voor realtime screening van eiwittypologieën in biopten, om de behandeling van complexe tumoren te verbeteren.
Elastografie voor snellere herkenning van borstkanker in 3D foto-akoestische mammografie
Het project richt zich op het versnellen van borstkankerdiagnose door elastografie te integreren in 3D foto-akoestische mammografie.