Towards pediatric molecular imaging: development of a low-dose and high-performance Total Body PET scanner

Developing the PHOENIX total body PET scanner aims to enhance pediatric imaging by achieving high sensitivity and spatial resolution while ensuring patient safety and comfort.

Subsidie
€ 1.464.841
2024

Projectdetails

Introduction

Positron Emission Tomography (PET) constitutes the imaging modality of excellence in nuclear medicine. Conventional whole body (WB) PET are used for both adult and pediatric studies. However, these scanners are not large enough to image the entire infant body, are not optimized in terms of sensitivity imposing the injection of high radiotracer doses, and their spatial resolution is at best 3-5 mm at the center of the scanner, which is not enough for visualizing small lesions.

Moreover, since PET imaging requires the injection of a radiotracer compound, its use is compromised in pediatrics due to radiation regulations and patient safety.

Project Objective

To overcome these limitations, I aim to develop an affordable high-performance, high-sensitivity total body (TB)-PET for pediatric imaging. The system, named PHOENIX, targets a high effective sensitivity of x25-30 that of clinical WB-PET.

Design Specifications

To achieve this goal, we propose a large axial scanner of 54.5 cm with a bore diameter of 32 cm to cover all organs of children—without becoming claustrophobic—and, thus, permitting dynamic multi-organ studies.

Detector Technology

For the best cost-performance tradeoff, the PHOENIX detectors would be based on semi-monolithic BGO crystals coupled to SiPMs. This design allows characterizing the light distribution profiles to retrieve photon depth of interaction information, resulting in a uniform image spatial resolution of <3 mm while simultaneously providing time-of-flight (TOF) capabilities.

To offer significant TOF information, I aim to exploit the low Cherenkov light yield produced in BGO. We will implement a scalable custom readout circuit composed of three stages:

  1. Signal multiplexing
  2. Event classification - Cherenkov and Scintillation
  3. Commercial ASIC adaptation for digitization

Conclusion

Developing the PHOENIX scanner constitutes a major research and technological challenge. If successful, it will promote PET imaging of children and improve its diagnostic capabilities, staging, and response assessment.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.464.841
Totale projectbegroting€ 1.464.841

Tijdlijn

Startdatum1-12-2024
Einddatum30-11-2029
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICASpenvoerder

Land(en)

Spain

Vergelijkbare projecten binnen European Research Council

ERC Proof of...

Cherenkov light for total-body Positron Emission Tomography

The project aims to develop a cost-effective, high-performance PET scanner using Cherenkov photon detection to enhance early cancer diagnosis and treatment monitoring.

€ 150.000
ERC Starting...

CHerenkov Light mOdulE for time-of-flight Positron Emission Tomography

The CHLOE-PET project aims to develop an advanced gamma detector for TOF-PET that enhances time and spatial resolution by up to 7 and 10 times, improving cancer diagnostics without extra costs.

€ 1.384.755
ERC Advanced...

3D silicon detector for imaging of diagnostic and therapeutic nuclear medicine radiotracers with outstanding efficiency and high spatial resolution.

This project aims to develop a novel molecular imaging instrument using advanced silicon sensors to enhance efficiency and resolution, potentially revolutionizing medical imaging and related research fields.

€ 3.351.875
ERC Proof of...

Open Geometry PET, with 150ps TOF Resolution, for Real Time Molecular Imaging

Open-IMAGING aims to create a flexible Open Imaging System using advanced PET technology for high-resolution imaging, enabling safer interventions and improved patient monitoring.

€ 150.000
ERC Starting...

Prompt Gamma Time Imaging: a new medical-imaging modality for adaptive Particle Therapy

The project aims to enhance particle therapy efficacy and safety by developing Prompt Gamma Time Imaging for real-time monitoring of treatment, improving dose control and adaptive dosimetry.

€ 1.498.969

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

Next generation Limited-Angle time-of-flight PET imager

The PetVision project aims to develop a cost-effective, modular PET imaging device with enhanced sensitivity to improve cancer diagnostics accessibility across various medical settings.

€ 3.374.041
EIC Pathfinder

REAL TIME MOLECULAR IMAGER WITH UNSURPASSED RESOLUTION

RETIMAGER aims to revolutionize PET imaging by achieving ten-fold improvements in spatial and temporal resolution, enabling real-time, high-sensitivity imaging for personalized precision medicine.

€ 3.126.347
EIC Pathfinder

Fast gated superconducting nanowire camera for multi-functional optical tomograph

This project aims to develop a multifunctional optical tomograph using an innovative light sensor to enhance deep body imaging and monitor organ functionality with 100x improved signal-to-noise ratio.

€ 2.495.508
EIC Transition

Perovskite Photon Counting X-ray Detectors for Medical Imaging.

Clarity Sensors is developing advanced photon-counting detectors using halide perovskite semiconductors to enhance X-ray imaging resolution while reducing radiation dose, aiming for widespread adoption in clinical settings.

€ 2.494.268
EIC Pathfinder

2D Material-Based Multiple Oncotherapy Against Metastatic Disease Using a Radically New Computed Tomography Approach

PERSEUS aims to develop a novel nanotechnology-based cancer therapy that activates under CT imaging to treat deep-seated, drug-resistant tumors with minimal side effects.

€ 2.740.675