Open Geometry PET, with 150ps TOF Resolution, for Real Time Molecular Imaging

Open-IMAGING aims to create a flexible Open Imaging System using advanced PET technology for high-resolution imaging, enabling safer interventions and improved patient monitoring.

Subsidie
€ 150.000
2022

Projectdetails

Introduction

Open-IMAGING will develop an innovative Open Imaging System, highly flexible and adaptable to the organ to be examined.

System Overview

The system of the Proof of Concept will consist of two large paddle detectors built with the novel PET (Positron Emission Tomography) technology developed in 4D-PET ERC-ADG.

Key Features

  • Outstanding (<150ps) Coincidence Time Resolution
  • Detectors placed closer to the Field of View (FOV)

These features will dramatically increase the sensitivity, allowing high resolution and high contrast images at a lower dose (factor 10) than current commercial scanners.

Applications

The system will open up new venues for:

  1. Real-time image-guided interventions (surgery, radiation therapy)
  2. In-vivo tracking of a small number of cells
  3. Performing repeated scans for active surveillance of suspect patients

This will help diminish the number of false positives and ensure a safer post-treatment follow-up (for instance, chemotherapy).

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-4-2022
Einddatum30-9-2023
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICASpenvoerder

Land(en)

Spain

Vergelijkbare projecten binnen European Research Council

ERC Proof of...

Cherenkov light for total-body Positron Emission Tomography

The project aims to develop a cost-effective, high-performance PET scanner using Cherenkov photon detection to enhance early cancer diagnosis and treatment monitoring.

€ 150.000
ERC Starting...

CHerenkov Light mOdulE for time-of-flight Positron Emission Tomography

The CHLOE-PET project aims to develop an advanced gamma detector for TOF-PET that enhances time and spatial resolution by up to 7 and 10 times, improving cancer diagnostics without extra costs.

€ 1.384.755
ERC Advanced...

In vivo Immunofluorescence-Optical Coherence Tomography

Develop a high-resolution endoscopic imaging system combining Optical Coherence Tomography and fluorescent antibodies for improved diagnosis and treatment of esophageal cancer and lung disease.

€ 2.500.000
ERC Starting...

Towards pediatric molecular imaging: development of a low-dose and high-performance Total Body PET scanner

Developing the PHOENIX total body PET scanner aims to enhance pediatric imaging by achieving high sensitivity and spatial resolution while ensuring patient safety and comfort.

€ 1.464.841
ERC Starting...

Prompt Gamma Time Imaging: a new medical-imaging modality for adaptive Particle Therapy

The project aims to enhance particle therapy efficacy and safety by developing Prompt Gamma Time Imaging for real-time monitoring of treatment, improving dose control and adaptive dosimetry.

€ 1.498.969

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

REAL TIME MOLECULAR IMAGER WITH UNSURPASSED RESOLUTION

RETIMAGER aims to revolutionize PET imaging by achieving ten-fold improvements in spatial and temporal resolution, enabling real-time, high-sensitivity imaging for personalized precision medicine.

€ 3.126.347
EIC Pathfinder

Next generation Limited-Angle time-of-flight PET imager

The PetVision project aims to develop a cost-effective, modular PET imaging device with enhanced sensitivity to improve cancer diagnostics accessibility across various medical settings.

€ 3.374.041
EIC Pathfinder

On-chip tomographic microscopy: a paraDIgm Shift for RevolUtionizing lab-on-a-chiP bioimaging technology

DISRUPT aims to revolutionize biomedical imaging with a novel lab-on-chip technology for cost-effective, high-resolution cancer detection and diagnostics using integrated tomographic microscopy and AI.

€ 3.018.312
EIC Pathfinder

DDG-MRI for cancer detection - A novel medical imaging approach that correlates to FDG-PET without ionising radiation

The DDG-MRI project aims to develop a non-ionizing MRI technique using a novel deuterated glucose analogue to provide PET-like imaging for cancer detection and treatment monitoring.

€ 2.991.061
EIC Pathfinder

Fast gated superconducting nanowire camera for multi-functional optical tomograph

This project aims to develop a multifunctional optical tomograph using an innovative light sensor to enhance deep body imaging and monitor organ functionality with 100x improved signal-to-noise ratio.

€ 2.495.508