Resolving Surface Reactions in Plasma Catalysis: Towards Rational Catalyst Design

SURPLAS aims to enhance plasma-assisted catalytic conversion by uncovering catalyst surface mechanisms in plasma, enabling the rational design of efficient catalysts for CO2 hydrogenation.

Subsidie
€ 1.500.000
2024

Projectdetails

Introduction

Renewable energy is key to tackling climate change and reducing our dependence on fossil fuels. The intermittent supply of renewable energy hampers its efficient usage and creates a pressing need for innovative energy conversion approaches.

Energy-to-Fuel Conversion

Energy-to-fuel conversion using plasma-assisted catalytic conversion (PLAC) is highly promising for producing urgently needed fuels from greenhouse gases. In PLAC, reactants are activated in a plasma discharge, allowing for remarkable efficiencies beyond the limits of thermal catalysis.

Catalyst Design

The catalyst surface defines the reaction pathway and selectivity, and is thus key in catalyst design. However, at present, the active state of catalyst surfaces in plasma is unknown, limiting the impact of PLAC by inhibiting the design of dedicated plasma catalysts.

Project Goals

In SURPLAS, I will overcome this challenge and unlock the full potential of PLAC by:

  1. Determining the surface reaction mechanisms of catalysts in plasma.
  2. Demonstrating the rational design of plasma catalysts for CO2 hydrogenation.

My expertise in surface reactions, materials design, and in situ spectroscopy forms the basis of a pioneering approach to analyzing surfaces while they are exposed to microwave plasma.

Collaborative Efforts

My group’s unique embedding with plasma experts from industry and academia will facilitate the study of complex catalyst-plasma interactions. I will be the first to determine the active state of single-crystal surfaces and applied powder catalysts in plasma and to derive trends in selectivity and metal-support interactions in PLAC.

Expected Outcomes

This breakthrough in understanding will allow for the rational design of plasma catalysts, which I will validate by catalytic performance measurements.

Conclusion

This project will revolutionize PLAC by demonstrating catalyst design based on atomic-scale understanding of surface reactions in plasma. SURPLAS will allow me to lead the way into a new era of energy conversion, at a time when urgent need for fuels meets record growth in renewable energy.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.500.000
Totale projectbegroting€ 1.500.000

Tijdlijn

Startdatum1-1-2024
Einddatum31-12-2028
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • STICHTING NEDERLANDSE WETENSCHAPPELIJK ONDERZOEK INSTITUTENpenvoerder

Land(en)

Netherlands

Vergelijkbare projecten binnen European Research Council

ERC Starting...

Single-Atom Catalysts for a New Generation of Chemical Processes: from Fundamental Understanding to Interface Engineering

This project aims to develop innovative single-atom catalysts for CO2 conversion through advanced synthesis and characterization techniques, enhancing sustainability in chemical manufacturing.

€ 1.499.681
ERC Starting...

Heat in the driver’s seat: unlocking the full potential of pulsed photothermal catalysis

HEATPULSE aims to revolutionize chemical reactors by using light pulses for dynamic thermo-catalysis, enhancing reaction yields and energy efficiency while promoting green technology.

€ 1.500.000
ERC Starting...

Tackling limitations of future relevant thermo-chemical reactions by exploiting the dynamic surface behaviour of complex mixed metal oxides

This project aims to develop dynamic responsive catalysts that adapt their surface structure to enhance activity and stability, overcoming deactivation in catalytic processes through innovative engineering methods.

€ 1.813.618
ERC Starting...

Interface-sensitive Spectroscopy of Atomically-defined Solid/Liquid Interfaces Under Operating Conditions

The project aims to develop novel operando X-ray spectroscopies to analyze solid/liquid interfaces in electrocatalysis, enhancing understanding for efficient energy conversion and storage.

€ 1.500.000
ERC Consolid...

Force-Responsive Heterogeneous Catalysts

This project aims to develop tunable graphene-based catalytic materials that enhance reaction performance through externally controlled confinement, bridging the gap between artificial and natural catalysts.

€ 1.999.582

Vergelijkbare projecten uit andere regelingen

Missiegedrev...

Plasma Chemie voor CO2 vrije productie van waterstof en etheen uit methaan

Het project richt zich op de ontwikkeling van een CO2-vrije plasmatechnologie voor de productie van waterstof en etheen uit methaan, met als doel de CO2-emissies van OCI Nitrogen te reduceren.

€ 3.740.938
Missiegedrev...

Plasmasynthese van stikstofhoudende halffabricaten voor duurzame landbouw en circulaire kunststoffen

Dit project ontwikkelt een duurzame methode voor stikstofactivatie met behulp van plasma, gericht op het verminderen van GHG-emissies en het bevorderen van circulaire chemie in de ammoniakproductie.

€ 2.496.927
Missiegedrev...

SUNREY - Artificiële fotosynthese met een gouden toekomst

Het project richt zich op het opschalen van lichtgedreven plasmonische katalyse voor CO2-omzetting naar syngas, met als doel duurzame chemische productie op semi-industriële schaal te realiseren.

€ 3.569.054
EIC Pathfinder

Plankton-like Protocells for Artificial Photosynthesis Targeting Carbon-neutral Energy Vectors

PLANKT-ON aims to develop synthetic plankton-like protocells that autonomously convert light, water, and CO2 into O2 and formate, advancing sustainable solar hydrogen technology.

€ 2.533.216
Mkb-innovati...

Duurzame katalyse door innovatieve Nanocoater

VSPARTICLE onderzoekt de haalbaarheid van een nanocoater voor katalysedeeltjes om efficiëntere, schonere en uniforme katalysatoren te ontwikkelen, waardoor katalyse-onderzoek en industriële toepassingen versneld worden.

€ 20.000