Single-Atom Catalysts for a New Generation of Chemical Processes: from Fundamental Understanding to Interface Engineering
This project aims to develop innovative single-atom catalysts for CO2 conversion through advanced synthesis and characterization techniques, enhancing sustainability in chemical manufacturing.
Projectdetails
Introduction
The grand challenge for the chemical industries of the 21st century is the transition to more sustainable manufacturing processes that efficiently use raw materials and eliminate waste. Catalysis engineering is the key enabling technology to drive this transition, and single-atom catalysis is an emerging new approach to catalyst design.
Scientific Gaps
However, major questions concerning the local structure of these systems, their reactivity, and their evolution when prepared and structurally integrated into chemical devices are elusive. This project will address these important scientific gaps, laying the foundation for a new generation of catalysts for CO2 conversion.
Research Methodology
To unveil their microscale functioning, I will study for the first time the charge transfer taking place before, during, and after reactant adsorption and surface reactivity. This will be done by combining:
- Synthesis
- Operando characterizations
- Microkinetics
- Theoretical methods
Manufacturing Techniques
Then, merging microreactor technology and process intensification, I will manufacture single-atom catalysts in powder and as miniaturized thin films or foams, using new, scalable, and greener methods. This will bypass current limitations in terms of efficiency and metal dispersion, and close the gap on challenges related to catalyst-reactor integration, bridging chemical and device engineering.
Validation and Impact
The materials will be validated in the valorization of CO2 to derive structure-function relationships and prove major catalytic improvements under realistic conditions.
Project Significance
Overall, this is a fundamental and interdisciplinary project with ambitious objectives and high-risk/high-gain potential, that will go beyond the traditional pillars of catalysis. The scientific outcomes will provide new perspectives in catalysis and open paths in other fields, such as materials chemistry, green synthesis, and purification science.
Personal Positioning
My pioneering contributions in this field and new proof-of-concept data place me in a unique position to undertake this fundamental study.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.681 |
Totale projectbegroting | € 1.499.681 |
Tijdlijn
Startdatum | 1-5-2023 |
Einddatum | 30-4-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- POLITECNICO DI MILANOpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Atomic-Scale Tailored Materials for Electrochemical Methane Activation and Production of Valuable ChemicalsATOMISTIC aims to develop innovative electrochemical methods for converting methane into methanol and dimethyl carbonate, enhancing sustainability and selectivity through advanced materials and techniques. | ERC Consolid... | € 1.999.774 | 2023 | Details |
Force-Responsive Heterogeneous CatalystsThis project aims to develop tunable graphene-based catalytic materials that enhance reaction performance through externally controlled confinement, bridging the gap between artificial and natural catalysts. | ERC Consolid... | € 1.999.582 | 2025 | Details |
Reprogramming the reactivity of main-group compounds for capturing and activating methane and dinitrogenThe B-yond project aims to develop innovative main-group catalysts for unprecedented chemical transformations, advancing C-H bond functionalization and dinitrogen activation without transition metals. | ERC Consolid... | € 1.957.875 | 2022 | Details |
Hidden in the Noise: Transient Details of Nanoparticle-Catalyzed Reactions Under Challenging ConditionsThe project aims to enhance the design of metal nanoparticle catalysts for the Haber-Bosch reaction by investigating their dynamics under high-pressure conditions using advanced experimental techniques. | ERC Starting... | € 1.812.500 | 2023 | Details |
Tackling limitations of future relevant thermo-chemical reactions by exploiting the dynamic surface behaviour of complex mixed metal oxidesThis project aims to develop dynamic responsive catalysts that adapt their surface structure to enhance activity and stability, overcoming deactivation in catalytic processes through innovative engineering methods. | ERC Starting... | € 1.813.618 | 2023 | Details |
Atomic-Scale Tailored Materials for Electrochemical Methane Activation and Production of Valuable Chemicals
ATOMISTIC aims to develop innovative electrochemical methods for converting methane into methanol and dimethyl carbonate, enhancing sustainability and selectivity through advanced materials and techniques.
Force-Responsive Heterogeneous Catalysts
This project aims to develop tunable graphene-based catalytic materials that enhance reaction performance through externally controlled confinement, bridging the gap between artificial and natural catalysts.
Reprogramming the reactivity of main-group compounds for capturing and activating methane and dinitrogen
The B-yond project aims to develop innovative main-group catalysts for unprecedented chemical transformations, advancing C-H bond functionalization and dinitrogen activation without transition metals.
Hidden in the Noise: Transient Details of Nanoparticle-Catalyzed Reactions Under Challenging Conditions
The project aims to enhance the design of metal nanoparticle catalysts for the Haber-Bosch reaction by investigating their dynamics under high-pressure conditions using advanced experimental techniques.
Tackling limitations of future relevant thermo-chemical reactions by exploiting the dynamic surface behaviour of complex mixed metal oxides
This project aims to develop dynamic responsive catalysts that adapt their surface structure to enhance activity and stability, overcoming deactivation in catalytic processes through innovative engineering methods.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Duurzame katalyse door innovatieve NanocoaterVSPARTICLE onderzoekt de haalbaarheid van een nanocoater voor katalysedeeltjes om efficiëntere, schonere en uniforme katalysatoren te ontwikkelen, waardoor katalyse-onderzoek en industriële toepassingen versneld worden. | Mkb-innovati... | € 20.000 | 2020 | Details |
CO2-hergebruik in een cyclisch carbonaat-Pilot faseHet project richt zich op het opschalen van een innovatieve katalysator voor de productie van cyclisch carbonaat uit onzuivere CO2, met als doel een hoogwaardig elektrolyt voor accu's te ontwikkelen. | Demonstratie... | € 8.367.904 | 2022 | Details |
Membrane-assisted Ethylene Synthesis over Nanostructured Tandem CatalystsMemCat aims to develop tandem catalysts for direct CO2-to-ethylene conversion, enhancing efficiency and sustainability in producing carbon-negative plastic precursors. | EIC Pathfinder | € 3.867.840 | 2024 | Details |
Duurzame katalyse door innovatieve Nanocoater
VSPARTICLE onderzoekt de haalbaarheid van een nanocoater voor katalysedeeltjes om efficiëntere, schonere en uniforme katalysatoren te ontwikkelen, waardoor katalyse-onderzoek en industriële toepassingen versneld worden.
CO2-hergebruik in een cyclisch carbonaat-Pilot fase
Het project richt zich op het opschalen van een innovatieve katalysator voor de productie van cyclisch carbonaat uit onzuivere CO2, met als doel een hoogwaardig elektrolyt voor accu's te ontwikkelen.
Membrane-assisted Ethylene Synthesis over Nanostructured Tandem Catalysts
MemCat aims to develop tandem catalysts for direct CO2-to-ethylene conversion, enhancing efficiency and sustainability in producing carbon-negative plastic precursors.