Interface-sensitive Spectroscopy of Atomically-defined Solid/Liquid Interfaces Under Operating Conditions
The project aims to develop novel operando X-ray spectroscopies to analyze solid/liquid interfaces in electrocatalysis, enhancing understanding for efficient energy conversion and storage.
Projectdetails
Introduction
Charge-transfer reactions are key not only to the way that nature fuels life in photosynthesis but also in synthesizing sustainable fuels like hydrogen. Charge transfer occurs at interfaces with an applied potential, yet almost all our understanding of electrocatalytic activity trends comes from the bulk material properties in the as-prepared state.
Limitations in Current Understanding
We still lack interface-sensitive spectroscopy tools that can probe the composition and electronic structure under reaction conditions. Only with such interface-sensitive operando information can we fully understand the underlying reaction mechanisms and devise strategies for efficient energy conversion and storage.
Project Overview
In Interfaces at Work, I will overcome these limitations by developing novel interface-sensitive operando X-ray spectroscopies combined with model electrochemical surfaces with atomic-layer compositional control, merging the fields of surface science and liquid electrochemistry.
Objectives
My aim is to fully visualize the physico-chemical properties of the solid/liquid interface under operating conditions. Specifically, I will:
- Develop a new laboratory-based, multicolour operando “meniscus XPS” (X-ray photoelectron spectroscopy).
- Transform the recently invented “membrane XPS” by making it accessible to the relevant electrochemical materials using these materials themselves as new membranes.
Application of Techniques
I will apply these novel techniques to electrocatalyst and pseudocapacitor model systems based on epitaxial oxide thin films and 2D carbides.
Expected Outcomes
Ultimately, the proposed approach will allow me to track the surface and subsurface properties under applied potential to shed light on the electrochemical mechanisms. The operando insights will result in design rules for efficient energy conversion and storage based on the chemical and electronic properties of a true electrochemically active surface under operating conditions rather than the as-prepared bulk. This will help our transition towards sustainability.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.500.000 |
Totale projectbegroting | € 1.500.000 |
Tijdlijn
Startdatum | 1-5-2022 |
Einddatum | 30-4-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- UNIVERSITEIT TWENTEpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Probing and controlling ultrafast electron and ion dynamics in operating battery electrodes and interfacesFemtoCharge aims to elucidate ultrafast interfacial dynamics in batteries using femtosecond spectroscopy to enhance charge transport and develop new electrode/electrolyte materials. | ERC Starting... | € 1.830.605 | 2025 | Details |
Directed Evolution of Metastable Electrocatalyst Interfaces for Energy ConversionThis project aims to revolutionize electrocatalysis by leveraging high entropy materials and advanced techniques to discover stable, active catalysts for energy conversion reactions. | ERC Synergy ... | € 9.973.679 | 2024 | Details |
Single-Atom Catalysts for a New Generation of Chemical Processes: from Fundamental Understanding to Interface EngineeringThis project aims to develop innovative single-atom catalysts for CO2 conversion through advanced synthesis and characterization techniques, enhancing sustainability in chemical manufacturing. | ERC Starting... | € 1.499.681 | 2023 | Details |
Controlling Oxygen Selectivity at the Atomic ScaleCOSAS aims to optimize catalytic properties for sustainable energy by studying electrode-electrolyte interfaces using advanced techniques to enhance water oxidation and seawater electrolysis efficiency. | ERC Starting... | € 2.345.000 | 2023 | Details |
Atomic-Scale Tailored Materials for Electrochemical Methane Activation and Production of Valuable ChemicalsATOMISTIC aims to develop innovative electrochemical methods for converting methane into methanol and dimethyl carbonate, enhancing sustainability and selectivity through advanced materials and techniques. | ERC Consolid... | € 1.999.774 | 2023 | Details |
Probing and controlling ultrafast electron and ion dynamics in operating battery electrodes and interfaces
FemtoCharge aims to elucidate ultrafast interfacial dynamics in batteries using femtosecond spectroscopy to enhance charge transport and develop new electrode/electrolyte materials.
Directed Evolution of Metastable Electrocatalyst Interfaces for Energy Conversion
This project aims to revolutionize electrocatalysis by leveraging high entropy materials and advanced techniques to discover stable, active catalysts for energy conversion reactions.
Single-Atom Catalysts for a New Generation of Chemical Processes: from Fundamental Understanding to Interface Engineering
This project aims to develop innovative single-atom catalysts for CO2 conversion through advanced synthesis and characterization techniques, enhancing sustainability in chemical manufacturing.
Controlling Oxygen Selectivity at the Atomic Scale
COSAS aims to optimize catalytic properties for sustainable energy by studying electrode-electrolyte interfaces using advanced techniques to enhance water oxidation and seawater electrolysis efficiency.
Atomic-Scale Tailored Materials for Electrochemical Methane Activation and Production of Valuable Chemicals
ATOMISTIC aims to develop innovative electrochemical methods for converting methane into methanol and dimethyl carbonate, enhancing sustainability and selectivity through advanced materials and techniques.