Plankton-like Protocells for Artificial Photosynthesis Targeting Carbon-neutral Energy Vectors
PLANKT-ON aims to develop synthetic plankton-like protocells that autonomously convert light, water, and CO2 into O2 and formate, advancing sustainable solar hydrogen technology.
Projectdetails
Introduction
While mature solar technologies (i.e. photovoltaics, photo-electrochemical cells) cannot simultaneously address the multi-faceted future energy challenge, PLANKT-ON aims to develop a disruptive net-zero emissions technology to both address the global energy demand and reoxygenation of our planet. Inspired by Nature, we propose to assemble the first synthetic plankton-like protocells that autonomously utilize light, water, and CO2 to produce O2 and formate, as a green H2 vector.
Project Overview
To this aim, the plankton-like protocells will be shaped as containers of two synergic subdomains mimicking the natural plastids and the CO2-enzyme organelles. The artificial plastid (1st type proto-organelle) will utilize light to oxidize H2O to O2 and reduce a methyl viologen (MV) cofactor. This latter will feed the CO2-rich proto-organelle to selectively produce formate by a cascade enzymatic reaction.
We are expecting that this original bio-inspired strategy will open a route to sustainable solar hydrogen.
Long-Term Impact
The long-term impact is envisaged for scientific innovation in groundbreaking solar technology, going beyond the conventional photoelectrochemical cabled asset. It will be readily exploitable for empowering the EU vision for Smart Buildings as Micro-Energy Hubs in the world.
Fundamental research advances will be monitored by PLANKT-ON innovation radar activities, protected by our IP policy, and disseminated to reach the expected stakeholders and the general public.
Collaboration and Expertise
Multidisciplinary collaboration among the 6 partners, from 4 EU countries, 5 research centres, and 1 technology-based company, underpins the project activities that will target the EU mission.
PLANKT-ON counts on the valuable experience of its Scientific Advisory Committee, where internationally renowned scientists from:
- Princeton (USA)
- Berkeley (USA)
- Tokyo (Japan)
- EPFL-Lausanne (Switzerland)
will contribute to the results evaluation and benchmarking in the field of light management, photo-catalysis, and green H2 transport.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.533.216 |
Totale projectbegroting | € 2.533.216 |
Tijdlijn
Startdatum | 1-4-2023 |
Einddatum | 31-3-2026 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- CONSORZIO INTERUNIVERSITARIO NAZIONALE PER LA SCIENZA E TECNOLOGIA DEI MATERIALIpenvoerder
- COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
- ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOMATERIALES- CIC biomaGUNE
- POLITECNICO DI MILANO
- ENPHOS S.R.L.
- UNIVERSITY OF BRISTOL
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Photosynthetic electron focusing technology for direct efficient biohydrogen production from solar energyThe project aims to develop a cost-effective hydrogen production technology using genetically engineered cyanobacteria in large-scale photobioreactors, achieving high energy efficiency and sustainability. | EIC Pathfinder | € 4.194.947 | 2022 | Details |
GreenH2 production from water and bioalcohols by full solar spectrum in a flow reactorThis project aims to produce green hydrogen and high-value chemicals from water and biomass using a novel solar-driven process with high efficiency and zero carbon emissions. | EIC Pathfinder | € 2.201.654 | 2022 | Details |
Advanced Strategies for Development of Sustainable Semiconductors for Scalable Solar Cell ApplicationsSOLARUP aims to develop scalable, efficient, and sustainable solar cells using nanoengineered zinc phosphide, enhancing energy production for smart applications while reducing material dependence. | EIC Pathfinder | € 2.930.127 | 2022 | Details |
Single-Atom Photocatalysts Enhanced by a Self-Powered Photonic Glass Reactor to Produce Advanced BiofuelsGlaS-A-Fuels aims to develop efficient advanced biofuels from bio-ethanol using innovative photonic reactors and cooperative catalysts to enhance solar energy conversion and yield. | EIC Pathfinder | € 2.995.840 | 2024 | Details |
Highly Efficient Reactor for Conversion of CO2 and H2O to Carbon Neutral Fuels and ChemicalsThe project aims to develop a modular reactor technology for synthesizing carbon-neutral fuels and chemicals from CO2 and H2O using renewable energy, promoting sustainability and industrial integration. | EIC Pathfinder | € 2.250.500 | 2023 | Details |
Photosynthetic electron focusing technology for direct efficient biohydrogen production from solar energy
The project aims to develop a cost-effective hydrogen production technology using genetically engineered cyanobacteria in large-scale photobioreactors, achieving high energy efficiency and sustainability.
GreenH2 production from water and bioalcohols by full solar spectrum in a flow reactor
This project aims to produce green hydrogen and high-value chemicals from water and biomass using a novel solar-driven process with high efficiency and zero carbon emissions.
Advanced Strategies for Development of Sustainable Semiconductors for Scalable Solar Cell Applications
SOLARUP aims to develop scalable, efficient, and sustainable solar cells using nanoengineered zinc phosphide, enhancing energy production for smart applications while reducing material dependence.
Single-Atom Photocatalysts Enhanced by a Self-Powered Photonic Glass Reactor to Produce Advanced Biofuels
GlaS-A-Fuels aims to develop efficient advanced biofuels from bio-ethanol using innovative photonic reactors and cooperative catalysts to enhance solar energy conversion and yield.
Highly Efficient Reactor for Conversion of CO2 and H2O to Carbon Neutral Fuels and Chemicals
The project aims to develop a modular reactor technology for synthesizing carbon-neutral fuels and chemicals from CO2 and H2O using renewable energy, promoting sustainability and industrial integration.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
SUNREY - Artificiële fotosynthese met een gouden toekomstHet project richt zich op het opschalen van lichtgedreven plasmonische katalyse voor CO2-omzetting naar syngas, met als doel duurzame chemische productie op semi-industriële schaal te realiseren. | Missiegedrev... | € 3.569.054 | 2025 | Details |
Power-to-X: STREAMing Hydrogen from 3-Band Solar Cells boosted with Photonic ManagementX-STREAM aims to revolutionize sustainable energy by integrating advanced photovoltaic systems with electrochemical storage to achieve high-efficiency hydrogen production from solar energy. | ERC Consolid... | € 1.999.608 | 2024 | Details |
Photoelectrosynthetic processes in continuous-flow under concentrated sunlight: combining efficiency with selectivityThe SunFlower project aims to develop innovative photoelectrochemical technologies to convert CO2 and organic waste into valuable chemicals and fuels, targeting CO2 neutrality in Europe by 2050. | ERC Consolid... | € 1.999.750 | 2022 | Details |
Plant based 4D biohybrid systemsThe 4D-PhytoHybrid project aims to create advanced photosynthetic biohybrid systems that integrate living plant cells with electronic materials to develop innovative hybrid technologies. | ERC Starting... | € 1.499.477 | 2022 | Details |
WARMDEMOPhotanol ontwikkelt een duurzame technologie met gemodificeerde cyanobacteriën die CO2 omzet in chemische stoffen, gericht op het opzetten van een demonstratiefaciliteit in mediterane omstandigheden. | Mkb-innovati... | € 19.992 | 2023 | Details |
SUNREY - Artificiële fotosynthese met een gouden toekomst
Het project richt zich op het opschalen van lichtgedreven plasmonische katalyse voor CO2-omzetting naar syngas, met als doel duurzame chemische productie op semi-industriële schaal te realiseren.
Power-to-X: STREAMing Hydrogen from 3-Band Solar Cells boosted with Photonic Management
X-STREAM aims to revolutionize sustainable energy by integrating advanced photovoltaic systems with electrochemical storage to achieve high-efficiency hydrogen production from solar energy.
Photoelectrosynthetic processes in continuous-flow under concentrated sunlight: combining efficiency with selectivity
The SunFlower project aims to develop innovative photoelectrochemical technologies to convert CO2 and organic waste into valuable chemicals and fuels, targeting CO2 neutrality in Europe by 2050.
Plant based 4D biohybrid systems
The 4D-PhytoHybrid project aims to create advanced photosynthetic biohybrid systems that integrate living plant cells with electronic materials to develop innovative hybrid technologies.
WARMDEMO
Photanol ontwikkelt een duurzame technologie met gemodificeerde cyanobacteriën die CO2 omzet in chemische stoffen, gericht op het opzetten van een demonstratiefaciliteit in mediterane omstandigheden.