Manipulating nonlinear sound waves using non-Hermiticity and active control. Nonlinear and Active Sound Absorption
The project aims to develop innovative noise reduction technologies by utilizing non-Hermitian physics to absorb high amplitude nonlinear sound waves, enhancing safety and reliability in heavy industry and aviation.
Projectdetails
Introduction
Audible sound is an inevitable physical phenomenon which can be “the best or the worst of all things.” In its best form, it is essential to human communication and entertainment. In its worst form, it appears as a social and health threat through noise in urban and domestic environments, arising from sources such as vehicles, ventilation systems, construction sites, and aircraft engines.
Noise as a Health Issue
Both European and international organisations identify noise as a major health issue of modern society and insist on regulating its levels. Some modern noise reduction solutions, using artificial periodic composites and benefiting from 3D printing techniques, do exist. However, an important problem regarding sound absorption still remains unsolved and unexplored.
Challenges with High Amplitude Nonlinear Waves
High amplitude nonlinear waves cannot be absorbed using the existing conventional techniques and devices. These high amplitude nonlinear waves pose an even larger problem than noise. When they appear in applications such as power plants or gas transport systems, they can cause significant environmental, reliability, and safety problems stemming from vibration and structural fatigue.
Project Overview
In an original perspective, the NASA project will utilise recent results from non-Hermitian physics to tame and absorb high amplitude, nonlinear sound waves. The project strives to uncover the main sources of nonlinearity in acoustic isolation solutions and to use active nonreciprocal scatterers in unison with modern concepts such as topological physics. This approach proposes an unconventional way to efficiently absorb nonlinear acoustic waves.
Fundamental Questions and Goals
Nonlinearity, which is known to lead into chaos and randomness, when in conjunction with non-Hermiticity, raises fundamental questions. Their synergy may revolutionise our ability to control waves. Within NASA, I aim to develop novel design principles and tools which will foster the development of efficient, adoptable, and reliable noise reduction technologies, particularly in heavy industry and aviation.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.449.935 |
Totale projectbegroting | € 1.449.935 |
Tijdlijn
Startdatum | 1-3-2023 |
Einddatum | 29-2-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MOdeling and Reduction of Aeroacoustics Sources of Interaction Noise in AviationThe project aims to develop a holistic acoustic model for predicting interaction noise in aviation by understanding flow distortion, ultimately enabling the design of quieter, zero-emission aircraft. | ERC Consolid... | € 1.988.158 | 2024 | Details |
Unconventional principles of underwater wave control in the sub-wavelength regimePOSEIDON aims to develop innovative underwater metamaterials for effective low and broadband noise mitigation, enhancing acoustic control in marine environments. | ERC Starting... | € 1.482.750 | 2022 | Details |
Acoustic fLow InteractioN over sound absorbing surfaces: effects on ImpedaNce and draGThis project aims to understand the interaction between acoustic waves and turbulent boundary layers using numerical simulations to improve acoustic characterization and design efficient, low-noise aircraft surfaces. | ERC Starting... | € 1.499.069 | 2023 | Details |
Minimisation of the offshore wind and tidal turbine acoustic footprint on marine lifeOff-coustics aims to develop silent offshore wind and tidal farms by combining numerical simulations and experiments to minimize their acoustic impact on marine life while ensuring energy production. | ERC Consolid... | € 1.992.500 | 2023 | Details |
Non-Hermitian elastodynamicsThis project aims to engineer metamaterials for precise control of elastic waves by leveraging non-Hermitian quantum mechanics and elastodynamics, unlocking novel phenomena for advanced engineering applications. | ERC Consolid... | € 1.594.166 | 2022 | Details |
MOdeling and Reduction of Aeroacoustics Sources of Interaction Noise in Aviation
The project aims to develop a holistic acoustic model for predicting interaction noise in aviation by understanding flow distortion, ultimately enabling the design of quieter, zero-emission aircraft.
Unconventional principles of underwater wave control in the sub-wavelength regime
POSEIDON aims to develop innovative underwater metamaterials for effective low and broadband noise mitigation, enhancing acoustic control in marine environments.
Acoustic fLow InteractioN over sound absorbing surfaces: effects on ImpedaNce and draG
This project aims to understand the interaction between acoustic waves and turbulent boundary layers using numerical simulations to improve acoustic characterization and design efficient, low-noise aircraft surfaces.
Minimisation of the offshore wind and tidal turbine acoustic footprint on marine life
Off-coustics aims to develop silent offshore wind and tidal farms by combining numerical simulations and experiments to minimize their acoustic impact on marine life while ensuring energy production.
Non-Hermitian elastodynamics
This project aims to engineer metamaterials for precise control of elastic waves by leveraging non-Hermitian quantum mechanics and elastodynamics, unlocking novel phenomena for advanced engineering applications.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
actieve geluidsonderdrukking in de gehoorgangHet project richt zich op het ontwikkelen van een open actieve lawaaionderdrukkingstechniek in een kanaalsysteem om geluid met meer dan 90% te reduceren, ondersteund door AI en innovatieve transducers. | Mkb-innovati... | € 20.000 | 2023 | Details |
Sustainable Innovations for Long-life Environmental Noise TechnologiesThe project aims to develop sustainable noise mitigation solutions, like low noise pavements and barriers using recycled materials, to effectively reduce urban noise pollution in densely populated areas. | LIFE Standar... | € 1.590.015 | 2023 | Details |
Smart Directional Sound SensingHet SDSS-project ontwikkelt geavanceerde microfoonarrays voor geluidslokalisatie en -analyse om agressie te detecteren en innovatieve toepassingen in zorg, kunst en veiligheid te verbeteren. | Mkb-innovati... | € 198.135 | 2016 | Details |
Haalbaarheidsstudie naar een innovatieve aeroakoestische meettechnologiePeutz voert een haalbaarheidsstudie uit voor de ontwikkeling van innovatieve aeroakoestische meettechnologie in windtunnels. | Mkb-innovati... | € 20.000 | 2023 | Details |
Haalbaarheidsonderzoek Adaptive Sound Masking TechnologyTAU wil een adaptief audiosysteem ontwikkelen dat storend omgevingsgeluid dempt met sound masking technologie, en onderzoekt de technische en economische haalbaarheid voor productontwikkeling. | Mkb-innovati... | € 20.000 | 2020 | Details |
actieve geluidsonderdrukking in de gehoorgang
Het project richt zich op het ontwikkelen van een open actieve lawaaionderdrukkingstechniek in een kanaalsysteem om geluid met meer dan 90% te reduceren, ondersteund door AI en innovatieve transducers.
Sustainable Innovations for Long-life Environmental Noise Technologies
The project aims to develop sustainable noise mitigation solutions, like low noise pavements and barriers using recycled materials, to effectively reduce urban noise pollution in densely populated areas.
Smart Directional Sound Sensing
Het SDSS-project ontwikkelt geavanceerde microfoonarrays voor geluidslokalisatie en -analyse om agressie te detecteren en innovatieve toepassingen in zorg, kunst en veiligheid te verbeteren.
Haalbaarheidsstudie naar een innovatieve aeroakoestische meettechnologie
Peutz voert een haalbaarheidsstudie uit voor de ontwikkeling van innovatieve aeroakoestische meettechnologie in windtunnels.
Haalbaarheidsonderzoek Adaptive Sound Masking Technology
TAU wil een adaptief audiosysteem ontwikkelen dat storend omgevingsgeluid dempt met sound masking technologie, en onderzoekt de technische en economische haalbaarheid voor productontwikkeling.