MOdeling and Reduction of Aeroacoustics Sources of Interaction Noise in Aviation

The project aims to develop a holistic acoustic model for predicting interaction noise in aviation by understanding flow distortion, ultimately enabling the design of quieter, zero-emission aircraft.

Subsidie
€ 1.988.158
2024

Projectdetails

Introduction

The target of climate-neutral aviation has led to a strong increase in the size of new propulsion systems, resulting in their lowered distance to the airframe components. This causes new aerodynamic interactions with heavy distortion of the turbulent flow, determining unpredictable sources of noise. Mitigating this interaction noise would allow for the deployment of radically new aircraft configurations capable of reducing up to 20% of the current aviation emissions.

Background

While studies from literature have tried to correct discrepancies larger than 10 dB from acoustic predictions by a-posteriori tuning the models to very specific flow patterns, recent results from my team have shed light on the physics behind the unpredictability of these noise sources. Results hinted that the geometrical deformation of the turbulent flow from its original pattern might explain the origin of interaction noise.

Objectives

To solve this puzzle, with MORASINA I aim at first understanding how the flow and the turbulence are distorted in archetypal interactions between rotating and stationary aerodynamic objects. My objective is to discover the unknown mathematical formulation to model this distortion mechanism and to use it to create the first holistic acoustic model for predictions of interaction noise.

Methodology

By innovatively describing the interaction mechanisms with mathematical functions related to the geometrical distortion of the flow, I will find an answer to whether different flow fields can be assimilated in a unique fundamental flow pattern. With this knowledge, I will create the first acoustic model based on a mathematical “flow twin” to accurately predict interaction noise.

Impact

For maximum impact on society, I will extend the model to equipollent interaction mechanisms with a neural network approach trained on the results, allowing the use of the prediction framework for reducing interaction noise in the design of the next generation of zero-emission and silent aircraft.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.988.158
Totale projectbegroting€ 1.988.158

Tijdlijn

Startdatum1-10-2024
Einddatum30-9-2029
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • TECHNISCHE UNIVERSITEIT DELFTpenvoerder

Land(en)

Netherlands

Vergelijkbare projecten binnen European Research Council

ERC Starting...

Acoustic fLow InteractioN over sound absorbing surfaces: effects on ImpedaNce and draG

This project aims to understand the interaction between acoustic waves and turbulent boundary layers using numerical simulations to improve acoustic characterization and design efficient, low-noise aircraft surfaces.

€ 1.499.069
ERC Consolid...

Minimisation of the offshore wind and tidal turbine acoustic footprint on marine life

Off-coustics aims to develop silent offshore wind and tidal farms by combining numerical simulations and experiments to minimize their acoustic impact on marine life while ensuring energy production.

€ 1.992.500
ERC Starting...

Manipulating nonlinear sound waves using non-Hermiticity and active control. Nonlinear and Active Sound Absorption

The project aims to develop innovative noise reduction technologies by utilizing non-Hermitian physics to absorb high amplitude nonlinear sound waves, enhancing safety and reliability in heavy industry and aviation.

€ 1.449.935
ERC Starting...

Beyond self-similarity in turbulence

This project aims to develop and validate a theory for intermediate-strain turbulence using machine learning and advanced simulations to enhance engineering applications like wind energy and UAV efficiency.

€ 1.498.820
ERC Consolid...

Discovering novel control strategies for turbulent wings through deep reinforcement learning

DEEPCONTROL aims to enhance aviation sustainability by using deep reinforcement learning and high-fidelity simulations for real-time flow control around wings, reducing fuel consumption and emissions.

€ 1.999.748

Vergelijkbare projecten uit andere regelingen

Mkb-innovati...

Haalbaarheidsstudie naar een innovatieve aeroakoestische meettechnologie

Peutz voert een haalbaarheidsstudie uit voor de ontwikkeling van innovatieve aeroakoestische meettechnologie in windtunnels.

€ 20.000
EIC Pathfinder

Bioinspired Electroactive Aeronautical multiscale LIVE-skin

The BEALIVE project develops a bio-inspired live skin for air-vehicles that enhances aerodynamic performance and reduces noise through advanced electroactive materials and real-time AI optimization.

€ 2.495.445
Mkb-innovati...

actieve geluidsonderdrukking in de gehoorgang

Het project richt zich op het ontwikkelen van een open actieve lawaaionderdrukkingstechniek in een kanaalsysteem om geluid met meer dan 90% te reduceren, ondersteund door AI en innovatieve transducers.

€ 20.000
Mkb-innovati...

Haalbaarheidsstudie naar de ontwikkeling van een machine learning geluidsberekeningsmodel

Het project onderzoekt de haalbaarheid van een nieuw machine-learning geluidsberekeningsmodel om consensus te bereiken over geluidsniveau metingen en beleid te verbeteren.

€ 20.000
LIFE Standar...

Sustainable Innovations for Long-life Environmental Noise Technologies

The project aims to develop sustainable noise mitigation solutions, like low noise pavements and barriers using recycled materials, to effectively reduce urban noise pollution in densely populated areas.

€ 1.590.015