MOdeling and Reduction of Aeroacoustics Sources of Interaction Noise in Aviation
The project aims to develop a holistic acoustic model for predicting interaction noise in aviation by understanding flow distortion, ultimately enabling the design of quieter, zero-emission aircraft.
Projectdetails
Introduction
The target of climate-neutral aviation has led to a strong increase in the size of new propulsion systems, resulting in their lowered distance to the airframe components. This causes new aerodynamic interactions with heavy distortion of the turbulent flow, determining unpredictable sources of noise. Mitigating this interaction noise would allow for the deployment of radically new aircraft configurations capable of reducing up to 20% of the current aviation emissions.
Background
While studies from literature have tried to correct discrepancies larger than 10 dB from acoustic predictions by a-posteriori tuning the models to very specific flow patterns, recent results from my team have shed light on the physics behind the unpredictability of these noise sources. Results hinted that the geometrical deformation of the turbulent flow from its original pattern might explain the origin of interaction noise.
Objectives
To solve this puzzle, with MORASINA I aim at first understanding how the flow and the turbulence are distorted in archetypal interactions between rotating and stationary aerodynamic objects. My objective is to discover the unknown mathematical formulation to model this distortion mechanism and to use it to create the first holistic acoustic model for predictions of interaction noise.
Methodology
By innovatively describing the interaction mechanisms with mathematical functions related to the geometrical distortion of the flow, I will find an answer to whether different flow fields can be assimilated in a unique fundamental flow pattern. With this knowledge, I will create the first acoustic model based on a mathematical “flow twin” to accurately predict interaction noise.
Impact
For maximum impact on society, I will extend the model to equipollent interaction mechanisms with a neural network approach trained on the results, allowing the use of the prediction framework for reducing interaction noise in the design of the next generation of zero-emission and silent aircraft.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.988.158 |
Totale projectbegroting | € 1.988.158 |
Tijdlijn
Startdatum | 1-10-2024 |
Einddatum | 30-9-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- TECHNISCHE UNIVERSITEIT DELFTpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Acoustic fLow InteractioN over sound absorbing surfaces: effects on ImpedaNce and draGThis project aims to understand the interaction between acoustic waves and turbulent boundary layers using numerical simulations to improve acoustic characterization and design efficient, low-noise aircraft surfaces. | ERC Starting... | € 1.499.069 | 2023 | Details |
Minimisation of the offshore wind and tidal turbine acoustic footprint on marine lifeOff-coustics aims to develop silent offshore wind and tidal farms by combining numerical simulations and experiments to minimize their acoustic impact on marine life while ensuring energy production. | ERC Consolid... | € 1.992.500 | 2023 | Details |
Manipulating nonlinear sound waves using non-Hermiticity and active control. Nonlinear and Active Sound AbsorptionThe project aims to develop innovative noise reduction technologies by utilizing non-Hermitian physics to absorb high amplitude nonlinear sound waves, enhancing safety and reliability in heavy industry and aviation. | ERC Starting... | € 1.449.935 | 2023 | Details |
Beyond self-similarity in turbulenceThis project aims to develop and validate a theory for intermediate-strain turbulence using machine learning and advanced simulations to enhance engineering applications like wind energy and UAV efficiency. | ERC Starting... | € 1.498.820 | 2025 | Details |
Discovering novel control strategies for turbulent wings through deep reinforcement learningDEEPCONTROL aims to enhance aviation sustainability by using deep reinforcement learning and high-fidelity simulations for real-time flow control around wings, reducing fuel consumption and emissions. | ERC Consolid... | € 1.999.748 | 2022 | Details |
Acoustic fLow InteractioN over sound absorbing surfaces: effects on ImpedaNce and draG
This project aims to understand the interaction between acoustic waves and turbulent boundary layers using numerical simulations to improve acoustic characterization and design efficient, low-noise aircraft surfaces.
Minimisation of the offshore wind and tidal turbine acoustic footprint on marine life
Off-coustics aims to develop silent offshore wind and tidal farms by combining numerical simulations and experiments to minimize their acoustic impact on marine life while ensuring energy production.
Manipulating nonlinear sound waves using non-Hermiticity and active control. Nonlinear and Active Sound Absorption
The project aims to develop innovative noise reduction technologies by utilizing non-Hermitian physics to absorb high amplitude nonlinear sound waves, enhancing safety and reliability in heavy industry and aviation.
Beyond self-similarity in turbulence
This project aims to develop and validate a theory for intermediate-strain turbulence using machine learning and advanced simulations to enhance engineering applications like wind energy and UAV efficiency.
Discovering novel control strategies for turbulent wings through deep reinforcement learning
DEEPCONTROL aims to enhance aviation sustainability by using deep reinforcement learning and high-fidelity simulations for real-time flow control around wings, reducing fuel consumption and emissions.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Haalbaarheidsstudie naar een innovatieve aeroakoestische meettechnologiePeutz voert een haalbaarheidsstudie uit voor de ontwikkeling van innovatieve aeroakoestische meettechnologie in windtunnels. | Mkb-innovati... | € 20.000 | 2023 | Details |
Bioinspired Electroactive Aeronautical multiscale LIVE-skinThe BEALIVE project develops a bio-inspired live skin for air-vehicles that enhances aerodynamic performance and reduces noise through advanced electroactive materials and real-time AI optimization. | EIC Pathfinder | € 2.495.445 | 2023 | Details |
actieve geluidsonderdrukking in de gehoorgangHet project richt zich op het ontwikkelen van een open actieve lawaaionderdrukkingstechniek in een kanaalsysteem om geluid met meer dan 90% te reduceren, ondersteund door AI en innovatieve transducers. | Mkb-innovati... | € 20.000 | 2023 | Details |
Haalbaarheidsstudie naar de ontwikkeling van een machine learning geluidsberekeningsmodelHet project onderzoekt de haalbaarheid van een nieuw machine-learning geluidsberekeningsmodel om consensus te bereiken over geluidsniveau metingen en beleid te verbeteren. | Mkb-innovati... | € 20.000 | 2020 | Details |
Sustainable Innovations for Long-life Environmental Noise TechnologiesThe project aims to develop sustainable noise mitigation solutions, like low noise pavements and barriers using recycled materials, to effectively reduce urban noise pollution in densely populated areas. | LIFE Standar... | € 1.590.015 | 2023 | Details |
Haalbaarheidsstudie naar een innovatieve aeroakoestische meettechnologie
Peutz voert een haalbaarheidsstudie uit voor de ontwikkeling van innovatieve aeroakoestische meettechnologie in windtunnels.
Bioinspired Electroactive Aeronautical multiscale LIVE-skin
The BEALIVE project develops a bio-inspired live skin for air-vehicles that enhances aerodynamic performance and reduces noise through advanced electroactive materials and real-time AI optimization.
actieve geluidsonderdrukking in de gehoorgang
Het project richt zich op het ontwikkelen van een open actieve lawaaionderdrukkingstechniek in een kanaalsysteem om geluid met meer dan 90% te reduceren, ondersteund door AI en innovatieve transducers.
Haalbaarheidsstudie naar de ontwikkeling van een machine learning geluidsberekeningsmodel
Het project onderzoekt de haalbaarheid van een nieuw machine-learning geluidsberekeningsmodel om consensus te bereiken over geluidsniveau metingen en beleid te verbeteren.
Sustainable Innovations for Long-life Environmental Noise Technologies
The project aims to develop sustainable noise mitigation solutions, like low noise pavements and barriers using recycled materials, to effectively reduce urban noise pollution in densely populated areas.