Improving CAR-T cell therapies through AAV-mediated genetic engineering
This project aims to develop in vivo gene-targeted CAR-T cell therapies using evolved AAV for T cell delivery and Cas9 editing, ultimately translating findings to human clinical trials.
Projectdetails
Introduction
T cells expressing chimeric antigen receptors (CAR) have transformed cell therapies against some hematological cancers. As a postdoc, I evolved a synthetic adeno-associated virus (AAV) with tropism against murine T cells, providing a unique tool to study gene-targeted T cells in immunocompetent cancer models.
Proposal Overview
In this proposal, capitalizing on my breakthrough, I will develop novel strategies to generate gene-targeted CAR-T cells in vivo. This includes:
- Optimizing AAV delivery in immunocompetent mouse models.
- Combining these methods with technologies for Cas9 delivery for T cell-specific gene editing.
The ultimate goal of my proposal is to develop methods that can be translated to clinical trials in humans.
Humanized Mouse Model
To achieve this, I will establish a humanized mouse model that allows for targeting of human T cells in vivo. Key findings from this research project will be translated for proof-of-concept experiments.
Ground-breaking Research
As the first-ever study of gene-targeted T cells in vivo, this ground-breaking research will provide in-depth profiling of in vivo engineered CAR-T cells and their therapeutic potential. This study is a necessary first step towards accessible and affordable in vivo generated CAR-T cell therapies in humans.
Extension to Solid Tumors
Furthermore, to extend the use of CAR-T cells against solid tumors, I have developed an AAV-based platform to perform pooled knock-in T cell screens in immunocompetent solid tumor mouse models.
Synthetic Costimulatory Receptors
For this research proposal, I have designed a library of synthetic costimulatory receptors to be expressed with a CAR at the Trac locus to improve T cell fitness and persistence.
Advanced T Cell Engineering
By combining advanced T cell engineering with analysis on a single-cell level, these pioneering experiments will answer crucial questions for T cell therapies and tumor biology.
Collaborative Environment
To succeed with my ambitious and unconventional proposal, I plan to join the Department of Medicine, Huddinge, at the Karolinska Institute, building a collaborative team in an excellent translational research environment.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.503.155 |
Totale projectbegroting | € 1.503.155 |
Tijdlijn
Startdatum | 1-1-2025 |
Einddatum | 31-12-2029 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- KAROLINSKA INSTITUTETpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Engineering CAR-T cells to overcome glycosylation-driven tumour resistanceThe project aims to engineer CAR-T cells that express an enzyme to de-glycosylate tumor cells, enhancing their efficacy against solid cancers by overcoming immunosuppressive barriers. | ERC Starting... | € 1.500.000 | 2023 | Details |
Synthetic Chimeric Antigen Receptors: Hijacking Nitrenium Ions for Targeting, Therapy and Safety of Next Generation T Cell TherapyDevelop a universal synthetic CAR T cell platform using activatable nitrenium ions to enhance targeting, control T cell function, and improve efficacy against solid tumors. | ERC Consolid... | € 2.501.154 | 2024 | Details |
Chimeric Antigen Receptor (CAR) T Cell Therapy For Solid TumorsCAR-T(uning) aims to enhance CAR-T therapy for NSCLC by improving treatment persistence and reducing tumor immunosuppression, paving the way for effective, broadly applicable cancer therapies. | ERC Proof of... | € 150.000 | 2022 | Details |
Leveraging the impact of gut microbes to advance the efficacy of CAR-T cell immunotherapy.This project aims to enhance CAR-T cell therapy for B cell malignancies by investigating the gut microbiome's role in treatment efficacy and developing personalized interventions. | ERC Consolid... | € 1.999.819 | 2024 | Details |
Targeting of glycosylation pathways to empower CAR-T therapy of solid tumors.This project aims to enhance CAR-T cell therapy for solid tumors by engineering glycosylation pathways to improve immune response and long-term persistence against immunosuppressive environments. | ERC Advanced... | € 2.498.435 | 2023 | Details |
Engineering CAR-T cells to overcome glycosylation-driven tumour resistance
The project aims to engineer CAR-T cells that express an enzyme to de-glycosylate tumor cells, enhancing their efficacy against solid cancers by overcoming immunosuppressive barriers.
Synthetic Chimeric Antigen Receptors: Hijacking Nitrenium Ions for Targeting, Therapy and Safety of Next Generation T Cell Therapy
Develop a universal synthetic CAR T cell platform using activatable nitrenium ions to enhance targeting, control T cell function, and improve efficacy against solid tumors.
Chimeric Antigen Receptor (CAR) T Cell Therapy For Solid Tumors
CAR-T(uning) aims to enhance CAR-T therapy for NSCLC by improving treatment persistence and reducing tumor immunosuppression, paving the way for effective, broadly applicable cancer therapies.
Leveraging the impact of gut microbes to advance the efficacy of CAR-T cell immunotherapy.
This project aims to enhance CAR-T cell therapy for B cell malignancies by investigating the gut microbiome's role in treatment efficacy and developing personalized interventions.
Targeting of glycosylation pathways to empower CAR-T therapy of solid tumors.
This project aims to enhance CAR-T cell therapy for solid tumors by engineering glycosylation pathways to improve immune response and long-term persistence against immunosuppressive environments.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
NOn-VIral gene modified STEM cell therapyThis project aims to develop a high-throughput protocol for producing gene-corrected CAR T cells and blood stem cells using optimized photoporation and CRISPR technology for enhanced clinical application. | EIC Pathfinder | € 3.644.418 | 2022 | Details |
CAR T cells Rewired to prevent EXhaustion in the tumour microenvironmentCAR T-REX aims to enhance CAR T cell efficacy against solid tumors by integrating auto-regulated genetic circuits to prevent exhaustion, using advanced gene editing and delivery technologies. | EIC Pathfinder | € 2.733.931 | 2023 | Details |
Bottom-up manufacturing of artificial anti-tumor T cellsThe project aims to develop Artificial T cells (ArTCells) that mimic T cell therapy's anti-tumor functions more safely and cost-effectively, using engineered Giant Unilamellar Vesicles for targeted cancer treatment. | EIC Pathfinder | € 3.391.796 | 2024 | Details |
Hyper-targeting CAR NK cells from induced pluripotent stem cells for novel off-the-shelf anti-tumor therapiesThe HyperTargIPS-NK project aims to develop a scalable, off-the-shelf NK cell therapy using iPS cells to target and treat lethal cancers like pancreatic cancer, glioblastoma, and AML. | EIC Pathfinder | € 3.798.713 | 2023 | Details |
A revolutionary cell programming platform based on the targeted nano-delivery of a transposon gene editing systemThe NANO-ENGINE project aims to develop an affordable, scalable, and safe DNA-based in vivo cell programming technology using Targeted Nanoparticles to enhance accessibility of cell therapies for various diseases. | EIC Pathfinder | € 2.988.377 | 2023 | Details |
NOn-VIral gene modified STEM cell therapy
This project aims to develop a high-throughput protocol for producing gene-corrected CAR T cells and blood stem cells using optimized photoporation and CRISPR technology for enhanced clinical application.
CAR T cells Rewired to prevent EXhaustion in the tumour microenvironment
CAR T-REX aims to enhance CAR T cell efficacy against solid tumors by integrating auto-regulated genetic circuits to prevent exhaustion, using advanced gene editing and delivery technologies.
Bottom-up manufacturing of artificial anti-tumor T cells
The project aims to develop Artificial T cells (ArTCells) that mimic T cell therapy's anti-tumor functions more safely and cost-effectively, using engineered Giant Unilamellar Vesicles for targeted cancer treatment.
Hyper-targeting CAR NK cells from induced pluripotent stem cells for novel off-the-shelf anti-tumor therapies
The HyperTargIPS-NK project aims to develop a scalable, off-the-shelf NK cell therapy using iPS cells to target and treat lethal cancers like pancreatic cancer, glioblastoma, and AML.
A revolutionary cell programming platform based on the targeted nano-delivery of a transposon gene editing system
The NANO-ENGINE project aims to develop an affordable, scalable, and safe DNA-based in vivo cell programming technology using Targeted Nanoparticles to enhance accessibility of cell therapies for various diseases.