Synthetic Chimeric Antigen Receptors: Hijacking Nitrenium Ions for Targeting, Therapy and Safety of Next Generation T Cell Therapy
Develop a universal synthetic CAR T cell platform using activatable nitrenium ions to enhance targeting, control T cell function, and improve efficacy against solid tumors.
Projectdetails
Introduction
Chimeric antigen receptor (CAR) T cell therapy is a promising approach for cancer treatment with remarkable clinical outcomes. CAR T therapy involves the isolation of patients' T cells that are genetically modified with an engineered antigen receptor to attack cancer cells.
Challenges in CAR T Cell Therapy
Despite the great promise, the rapid activation and proliferation of CAR T cells can lead to serious side effects. In addition, CAR T therapy is challenged by:
- Limited effectiveness
- Difficulties in infiltrating solid tumors
- Targeting of healthy cells
- Cell exhaustion
- An expensive, lengthy, and personalized manufacturing process
Over the past years, researchers have explored many strategies to improve and control CAR T cell function and to develop more universal CAR T cell platforms. Yet, an off-the-shelf approach that allows full control of CAR T effector function, that is flexible in use, and can be obtained at low manufacturing costs is currently not available.
Proposed Solution
To address the above challenges, I will develop a highly innovative, universal synthetic CAR (SynCAR) T cell platform where the antigen receptor is easily adaptable by using synthetic, functionalized targeting ligands to control T cell effector function in space and time.
Methodology
At the basis of this proposal lies the use of highly reactive and activatable aryl nitrenium ions for protein modification, drug delivery, and as a novel class of therapeutics. I will:
- Tune nitrenium ion reactivity for bioconjugation and drug activation
- Use enzyme-activatable nitrenium ion precursors for synthetically modified antigen receptors
- Develop novel nitrenium ion-based prodrug strategies to improve CAR T efficiency
- Use innovative bioorthogonal chemistry to control CAR T activity in time and space
Goals
In this work, I will develop beyond the state-of-the-art chemical biology methods and molecular targeting tools to control, potentiate, and tune T cell activity with the ultimate goal to broaden the CAR T targeting landscape to solid tumors and beyond.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.501.154 |
Totale projectbegroting | € 2.501.154 |
Tijdlijn
Startdatum | 1-9-2024 |
Einddatum | 31-8-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- UNIVERSITEIT LEIDENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Chimeric Antigen Receptor (CAR) T Cell Therapy For Solid TumorsCAR-T(uning) aims to enhance CAR-T therapy for NSCLC by improving treatment persistence and reducing tumor immunosuppression, paving the way for effective, broadly applicable cancer therapies. | ERC Proof of... | € 150.000 | 2022 | Details |
Engineering CAR-T cells to overcome glycosylation-driven tumour resistanceThe project aims to engineer CAR-T cells that express an enzyme to de-glycosylate tumor cells, enhancing their efficacy against solid cancers by overcoming immunosuppressive barriers. | ERC Starting... | € 1.500.000 | 2023 | Details |
Improving CAR-T cell therapies through AAV-mediated genetic engineeringThis project aims to develop in vivo gene-targeted CAR-T cell therapies using evolved AAV for T cell delivery and Cas9 editing, ultimately translating findings to human clinical trials. | ERC Starting... | € 1.503.155 | 2025 | Details |
Generation, validation and use of a synthetic reporter of CAR T cell products function and dysfunctionDevelop a synthetic reporter system to enhance T cell fitness in immunotherapy by identifying and reversing dysfunction in CAR T cells for improved cancer treatment. | ERC Proof of... | € 150.000 | 2024 | Details |
Targeting of glycosylation pathways to empower CAR-T therapy of solid tumors.This project aims to enhance CAR-T cell therapy for solid tumors by engineering glycosylation pathways to improve immune response and long-term persistence against immunosuppressive environments. | ERC Advanced... | € 2.498.435 | 2023 | Details |
Chimeric Antigen Receptor (CAR) T Cell Therapy For Solid Tumors
CAR-T(uning) aims to enhance CAR-T therapy for NSCLC by improving treatment persistence and reducing tumor immunosuppression, paving the way for effective, broadly applicable cancer therapies.
Engineering CAR-T cells to overcome glycosylation-driven tumour resistance
The project aims to engineer CAR-T cells that express an enzyme to de-glycosylate tumor cells, enhancing their efficacy against solid cancers by overcoming immunosuppressive barriers.
Improving CAR-T cell therapies through AAV-mediated genetic engineering
This project aims to develop in vivo gene-targeted CAR-T cell therapies using evolved AAV for T cell delivery and Cas9 editing, ultimately translating findings to human clinical trials.
Generation, validation and use of a synthetic reporter of CAR T cell products function and dysfunction
Develop a synthetic reporter system to enhance T cell fitness in immunotherapy by identifying and reversing dysfunction in CAR T cells for improved cancer treatment.
Targeting of glycosylation pathways to empower CAR-T therapy of solid tumors.
This project aims to enhance CAR-T cell therapy for solid tumors by engineering glycosylation pathways to improve immune response and long-term persistence against immunosuppressive environments.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
CAR T cells Rewired to prevent EXhaustion in the tumour microenvironmentCAR T-REX aims to enhance CAR T cell efficacy against solid tumors by integrating auto-regulated genetic circuits to prevent exhaustion, using advanced gene editing and delivery technologies. | EIC Pathfinder | € 2.733.931 | 2023 | Details |
Bottom-up manufacturing of artificial anti-tumor T cellsThe project aims to develop Artificial T cells (ArTCells) that mimic T cell therapy's anti-tumor functions more safely and cost-effectively, using engineered Giant Unilamellar Vesicles for targeted cancer treatment. | EIC Pathfinder | € 3.391.796 | 2024 | Details |
Hyper-targeting CAR NK cells from induced pluripotent stem cells for novel off-the-shelf anti-tumor therapiesThe HyperTargIPS-NK project aims to develop a scalable, off-the-shelf NK cell therapy using iPS cells to target and treat lethal cancers like pancreatic cancer, glioblastoma, and AML. | EIC Pathfinder | € 3.798.713 | 2023 | Details |
FINE-TUNING T CELL NETWORKS OF EXHAUSTION BY SYNTHETIC SENSORST-FITNESS aims to enhance T cell therapy by preventing exhaustion through miRNA-based circuits and CRISPR/Cas editing, improving treatment efficacy for solid tumors in cancer patients. | EIC Pathfinder | € 4.387.825 | 2022 | Details |
Functional chemical reprogramming of cancer cells to induce antitumor immunityThe RESYNC consortium aims to revolutionize cancer immunotherapy by reprogramming cancer cells into antigen-presenting dendritic cells using small molecules for personalized and safer treatments. | EIC Pathfinder | € 2.966.695 | 2024 | Details |
CAR T cells Rewired to prevent EXhaustion in the tumour microenvironment
CAR T-REX aims to enhance CAR T cell efficacy against solid tumors by integrating auto-regulated genetic circuits to prevent exhaustion, using advanced gene editing and delivery technologies.
Bottom-up manufacturing of artificial anti-tumor T cells
The project aims to develop Artificial T cells (ArTCells) that mimic T cell therapy's anti-tumor functions more safely and cost-effectively, using engineered Giant Unilamellar Vesicles for targeted cancer treatment.
Hyper-targeting CAR NK cells from induced pluripotent stem cells for novel off-the-shelf anti-tumor therapies
The HyperTargIPS-NK project aims to develop a scalable, off-the-shelf NK cell therapy using iPS cells to target and treat lethal cancers like pancreatic cancer, glioblastoma, and AML.
FINE-TUNING T CELL NETWORKS OF EXHAUSTION BY SYNTHETIC SENSORS
T-FITNESS aims to enhance T cell therapy by preventing exhaustion through miRNA-based circuits and CRISPR/Cas editing, improving treatment efficacy for solid tumors in cancer patients.
Functional chemical reprogramming of cancer cells to induce antitumor immunity
The RESYNC consortium aims to revolutionize cancer immunotherapy by reprogramming cancer cells into antigen-presenting dendritic cells using small molecules for personalized and safer treatments.