Targeting of glycosylation pathways to empower CAR-T therapy of solid tumors.
This project aims to enhance CAR-T cell therapy for solid tumors by engineering glycosylation pathways to improve immune response and long-term persistence against immunosuppressive environments.
Projectdetails
Introduction
Chimeric Antigen Receptor (CAR) T cell therapy uniquely can provide life-long protection against tumor re-emergence upon clearance of even advanced-stage leukemia. However, for the more frequent solid tumor types (carcinomas, lymphomas), clearance of advanced-stage tumors, and especially the subsequent long-term protection, is only rarely achieved.
Challenges in Solid Tumor Treatment
The main reason for this is the multi-pathway immunosuppressive environment that these tumors evolve to overcome the selective pressure imposed by the patient’s immune system. This environment:
- Hampers the initial attack by CAR-Ts
- Often leads to low numbers of long-term persisting CAR-T cells
- Results in CAR-T cells that tend to be in a state of functional exhaustion
Most attempts at overcoming this issue target particular CAR-T cell proteins involved in individual pathways of immunosuppression. However, it is clear from early-stage clinical trials with such engineered CAR-T cells that multiple pathways will need to be tackled at the same time.
Innovative Approach
Inspired by this challenge, I have chosen a radically different path: we are targeting the CAR-T cell glycocalyx, i.e., the assembly of glycosylated structures that forms the outer layer of the cell. The unique property of glycosylation pathways is that they often modulate a large range of cell surface receptor biology at the same time.
Promising Results
Excitingly, this new research line has now generated the first highly promising results with the discovery of a single CAR-T glycogene inactivation that results in robust clearance of a benchmark highly immunosuppressive carcinoma rechallenge, in mice that were CAR-T cured from their primary tumor months earlier.
Future Directions
Encouraged by these exciting results that demonstrate strong long-term functional persistence of these glyco-engineered CAR-T cells, we have defined a programme to build on this finding and to explore a candidate set of further glycosylation engineering concepts in CAR-T cells, to further improve CAR-T therapy of solid tumors.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.498.435 |
Totale projectbegroting | € 2.498.435 |
Tijdlijn
Startdatum | 1-7-2023 |
Einddatum | 30-6-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- VIB VZWpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Engineering CAR-T cells to overcome glycosylation-driven tumour resistanceThe project aims to engineer CAR-T cells that express an enzyme to de-glycosylate tumor cells, enhancing their efficacy against solid cancers by overcoming immunosuppressive barriers. | ERC Starting... | € 1.500.000 | 2023 | Details |
Chimeric Antigen Receptor (CAR) T Cell Therapy For Solid TumorsCAR-T(uning) aims to enhance CAR-T therapy for NSCLC by improving treatment persistence and reducing tumor immunosuppression, paving the way for effective, broadly applicable cancer therapies. | ERC Proof of... | € 150.000 | 2022 | Details |
Leveraging the impact of gut microbes to advance the efficacy of CAR-T cell immunotherapy.This project aims to enhance CAR-T cell therapy for B cell malignancies by investigating the gut microbiome's role in treatment efficacy and developing personalized interventions. | ERC Consolid... | € 1.999.819 | 2024 | Details |
Synthetic Chimeric Antigen Receptors: Hijacking Nitrenium Ions for Targeting, Therapy and Safety of Next Generation T Cell TherapyDevelop a universal synthetic CAR T cell platform using activatable nitrenium ions to enhance targeting, control T cell function, and improve efficacy against solid tumors. | ERC Consolid... | € 2.501.154 | 2024 | Details |
Polyclonal anti-tumor immunity by engineered human T cellsThis project aims to enhance adoptive T cell therapies for solid tumors by engineering TCR sensitivity and safety, creating robust, antigen-agnostic immune responses to improve patient outcomes. | ERC Starting... | € 1.812.500 | 2022 | Details |
Engineering CAR-T cells to overcome glycosylation-driven tumour resistance
The project aims to engineer CAR-T cells that express an enzyme to de-glycosylate tumor cells, enhancing their efficacy against solid cancers by overcoming immunosuppressive barriers.
Chimeric Antigen Receptor (CAR) T Cell Therapy For Solid Tumors
CAR-T(uning) aims to enhance CAR-T therapy for NSCLC by improving treatment persistence and reducing tumor immunosuppression, paving the way for effective, broadly applicable cancer therapies.
Leveraging the impact of gut microbes to advance the efficacy of CAR-T cell immunotherapy.
This project aims to enhance CAR-T cell therapy for B cell malignancies by investigating the gut microbiome's role in treatment efficacy and developing personalized interventions.
Synthetic Chimeric Antigen Receptors: Hijacking Nitrenium Ions for Targeting, Therapy and Safety of Next Generation T Cell Therapy
Develop a universal synthetic CAR T cell platform using activatable nitrenium ions to enhance targeting, control T cell function, and improve efficacy against solid tumors.
Polyclonal anti-tumor immunity by engineered human T cells
This project aims to enhance adoptive T cell therapies for solid tumors by engineering TCR sensitivity and safety, creating robust, antigen-agnostic immune responses to improve patient outcomes.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
CAR T cells Rewired to prevent EXhaustion in the tumour microenvironmentCAR T-REX aims to enhance CAR T cell efficacy against solid tumors by integrating auto-regulated genetic circuits to prevent exhaustion, using advanced gene editing and delivery technologies. | EIC Pathfinder | € 2.733.931 | 2023 | Details |
Bottom-up manufacturing of artificial anti-tumor T cellsThe project aims to develop Artificial T cells (ArTCells) that mimic T cell therapy's anti-tumor functions more safely and cost-effectively, using engineered Giant Unilamellar Vesicles for targeted cancer treatment. | EIC Pathfinder | € 3.391.796 | 2024 | Details |
Next generation, off-the-shelf, non fratricide-directed, CAR immunotherapy for relapse/refractory T-cell acute lymphoblastic leukemiaThe project aims to develop a cost-effective immunotherapy for R/R T-ALL by dual targeting specific antigens using scalable, off-the-shelf CORD-GDT cells to improve patient outcomes. | EIC Transition | € 2.497.500 | 2023 | Details |
Hyper-targeting CAR NK cells from induced pluripotent stem cells for novel off-the-shelf anti-tumor therapiesThe HyperTargIPS-NK project aims to develop a scalable, off-the-shelf NK cell therapy using iPS cells to target and treat lethal cancers like pancreatic cancer, glioblastoma, and AML. | EIC Pathfinder | € 3.798.713 | 2023 | Details |
FINE-TUNING T CELL NETWORKS OF EXHAUSTION BY SYNTHETIC SENSORST-FITNESS aims to enhance T cell therapy by preventing exhaustion through miRNA-based circuits and CRISPR/Cas editing, improving treatment efficacy for solid tumors in cancer patients. | EIC Pathfinder | € 4.387.825 | 2022 | Details |
CAR T cells Rewired to prevent EXhaustion in the tumour microenvironment
CAR T-REX aims to enhance CAR T cell efficacy against solid tumors by integrating auto-regulated genetic circuits to prevent exhaustion, using advanced gene editing and delivery technologies.
Bottom-up manufacturing of artificial anti-tumor T cells
The project aims to develop Artificial T cells (ArTCells) that mimic T cell therapy's anti-tumor functions more safely and cost-effectively, using engineered Giant Unilamellar Vesicles for targeted cancer treatment.
Next generation, off-the-shelf, non fratricide-directed, CAR immunotherapy for relapse/refractory T-cell acute lymphoblastic leukemia
The project aims to develop a cost-effective immunotherapy for R/R T-ALL by dual targeting specific antigens using scalable, off-the-shelf CORD-GDT cells to improve patient outcomes.
Hyper-targeting CAR NK cells from induced pluripotent stem cells for novel off-the-shelf anti-tumor therapies
The HyperTargIPS-NK project aims to develop a scalable, off-the-shelf NK cell therapy using iPS cells to target and treat lethal cancers like pancreatic cancer, glioblastoma, and AML.
FINE-TUNING T CELL NETWORKS OF EXHAUSTION BY SYNTHETIC SENSORS
T-FITNESS aims to enhance T cell therapy by preventing exhaustion through miRNA-based circuits and CRISPR/Cas editing, improving treatment efficacy for solid tumors in cancer patients.