A revolutionary cell programming platform based on the targeted nano-delivery of a transposon gene editing system
The NANO-ENGINE project aims to develop an affordable, scalable, and safe DNA-based in vivo cell programming technology using Targeted Nanoparticles to enhance accessibility of cell therapies for various diseases.
Projectdetails
Aim
The NANO-ENGINE project aims to develop a first-in-class, DNA-based, non-viral, targeted in vivo cell programming technology that can be utilized for treating a broad range of diseases, including cancer and genetic disorders. In this project, the consortium aims to assemble, characterize, and test the Targeted Nanoparticles, explore small-scale synthesis, conduct proof of concept studies, and develop a preliminary business plan.
Unmet Need
Currently, the accessibility of cell therapies, specifically CAR-T cell therapy, to the general patient population is limited by high costs, complexity, and safety concerns. These limitations are caused by:
- Ex vivo manufacturing processes of adoptive cell technologies
- Requirement of highly specialized clinical facilities
- The clinical toxicities and the need for preconditioning chemotherapy
Therefore, there is a large unmet need for alternative approaches that make adoptive cell therapy truly affordable, scalable, and widely accessible in an out-patient setting.
Solution
We will develop Targeted Nanoparticles that form CAR-T cells in vivo, by combining a proprietary T cell binder-coated long-circulatory lipid nanoparticle and a non-viral, transposon-based, gene editing system. As such, we will circumvent the aforementioned issues associated with traditional cell therapies with reduced cost, complexity, and associated clinical risks, greatly increasing the accessibility of cell therapies to patients worldwide.
Consortium
The consortium will leverage main applicant NANOCELL’s deep knowledge on non-viral gene transfer technologies.
Expertise Contributions
- UU provides critical expertise on nanomedicine, protein, and cell engineering.
- KI/UOXF has developed a revolutionary single particle analysis method, which allows the consortium to obtain unique drug product characterization insights.
- SINTEF adds crucial know-how on bulk analysis of Targeted Nanoparticles and is closely involved in regulatory standards for nucleic acid therapeutics.
- QSAR uses machine learning to predict nanoparticle performance and minimize experimental work.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.988.377 |
Totale projectbegroting | € 2.988.377 |
Tijdlijn
Startdatum | 1-4-2023 |
Einddatum | 31-3-2026 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- UNIVERSITEIT UTRECHTpenvoerder
- SINTEF AS
- NANOCELL THERAPEUTICS BV
- KAROLINSKA INSTITUTET
- QSAR LAB SPOLKA Z OGRANICZONA ODPOWIEDZIALNOSCIA
- IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
- THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
New Prime Editing and non-viral delivery strategies for Gene TherapyThis project aims to develop non-viral delivery systems and novel prime editors to enhance gene editing efficiency and safety for treating Sickle Cell Disease and other genetic disorders. | EIC Pathfinder | € 4.406.097 | 2022 | Details |
NOn-VIral gene modified STEM cell therapyThis project aims to develop a high-throughput protocol for producing gene-corrected CAR T cells and blood stem cells using optimized photoporation and CRISPR technology for enhanced clinical application. | EIC Pathfinder | € 3.644.418 | 2022 | Details |
CAR T cells Rewired to prevent EXhaustion in the tumour microenvironmentCAR T-REX aims to enhance CAR T cell efficacy against solid tumors by integrating auto-regulated genetic circuits to prevent exhaustion, using advanced gene editing and delivery technologies. | EIC Pathfinder | € 2.733.931 | 2023 | Details |
Hyper-targeting CAR NK cells from induced pluripotent stem cells for novel off-the-shelf anti-tumor therapiesThe HyperTargIPS-NK project aims to develop a scalable, off-the-shelf NK cell therapy using iPS cells to target and treat lethal cancers like pancreatic cancer, glioblastoma, and AML. | EIC Pathfinder | € 3.798.713 | 2023 | Details |
Functional chemical reprogramming of cancer cells to induce antitumor immunityThe RESYNC consortium aims to revolutionize cancer immunotherapy by reprogramming cancer cells into antigen-presenting dendritic cells using small molecules for personalized and safer treatments. | EIC Pathfinder | € 2.966.695 | 2024 | Details |
New Prime Editing and non-viral delivery strategies for Gene Therapy
This project aims to develop non-viral delivery systems and novel prime editors to enhance gene editing efficiency and safety for treating Sickle Cell Disease and other genetic disorders.
NOn-VIral gene modified STEM cell therapy
This project aims to develop a high-throughput protocol for producing gene-corrected CAR T cells and blood stem cells using optimized photoporation and CRISPR technology for enhanced clinical application.
CAR T cells Rewired to prevent EXhaustion in the tumour microenvironment
CAR T-REX aims to enhance CAR T cell efficacy against solid tumors by integrating auto-regulated genetic circuits to prevent exhaustion, using advanced gene editing and delivery technologies.
Hyper-targeting CAR NK cells from induced pluripotent stem cells for novel off-the-shelf anti-tumor therapies
The HyperTargIPS-NK project aims to develop a scalable, off-the-shelf NK cell therapy using iPS cells to target and treat lethal cancers like pancreatic cancer, glioblastoma, and AML.
Functional chemical reprogramming of cancer cells to induce antitumor immunity
The RESYNC consortium aims to revolutionize cancer immunotherapy by reprogramming cancer cells into antigen-presenting dendritic cells using small molecules for personalized and safer treatments.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
TraffikGene-Tx: Targeted Peptide Carriers for RNA DeliveryTraffikGene-Tx aims to develop safe, scalable peptide carriers for targeted RNA delivery, addressing genetic diseases and enhancing NAT therapies to improve patient outcomes and reduce healthcare costs. | EIC Transition | € 2.498.963 | 2023 | Details |
nanoVAST: a novel, non- viral LNP for precision payload delivery of genome editors and other cargoThe project aims to develop the nanoVAST system for targeted RNA delivery to CD19+ B cells, enhancing specificity and efficiency while avoiding the drawbacks of current delivery methods. | ERC Proof of... | € 150.000 | 2022 | Details |
RESTORING IMMUNITY CONTROL OF GI CANCERSTIMNano aims to develop a novel cancer immunotherapy platform using targeted biodegradable nanoparticles to enhance immune responses against gastrointestinal cancers, progressing through clinical trials and commercialization. | EIC Transition | € 2.007.750 | 2025 | Details |
Functional Nanoscale TherapeuticsDevelop functional hybrid nanoscale medicines to enhance intracellular delivery of mRNA and combat nanoscale pathogens, aiming for advanced therapies against diseases like cancer. | ERC Advanced... | € 2.499.796 | 2024 | Details |
In Vivo CRISPR-Based Nanoplatform for Gene Editing: A New Disruptive Avenue for Non-Invasive Treatment of Genetic Brain DiseasesThis project aims to develop a novel nanoplatform for the safe and efficient delivery of CRISPR gene editing technology to treat genetic brain diseases non-invasively. | ERC Consolid... | € 2.249.895 | 2022 | Details |
TraffikGene-Tx: Targeted Peptide Carriers for RNA Delivery
TraffikGene-Tx aims to develop safe, scalable peptide carriers for targeted RNA delivery, addressing genetic diseases and enhancing NAT therapies to improve patient outcomes and reduce healthcare costs.
nanoVAST: a novel, non- viral LNP for precision payload delivery of genome editors and other cargo
The project aims to develop the nanoVAST system for targeted RNA delivery to CD19+ B cells, enhancing specificity and efficiency while avoiding the drawbacks of current delivery methods.
RESTORING IMMUNITY CONTROL OF GI CANCERS
TIMNano aims to develop a novel cancer immunotherapy platform using targeted biodegradable nanoparticles to enhance immune responses against gastrointestinal cancers, progressing through clinical trials and commercialization.
Functional Nanoscale Therapeutics
Develop functional hybrid nanoscale medicines to enhance intracellular delivery of mRNA and combat nanoscale pathogens, aiming for advanced therapies against diseases like cancer.
In Vivo CRISPR-Based Nanoplatform for Gene Editing: A New Disruptive Avenue for Non-Invasive Treatment of Genetic Brain Diseases
This project aims to develop a novel nanoplatform for the safe and efficient delivery of CRISPR gene editing technology to treat genetic brain diseases non-invasively.