Acoustic whole blood imaging flow cytometry for rare cell identification
This project aims to develop acoustic whole-blood cytometry for accurate detection and monitoring of circulating tumor cells in metastatic breast and prostate cancer, enhancing personalized healthcare.
Projectdetails
Introduction
This project addresses the need for new tools to detect and monitor the disease progression in patients with metastatic cancer. Breast and prostate cancer are the most common malignant cancers in women and men, respectively. Metastasis is the main threat in these cancers since it turns a curable local disease into a chronic lethal disease.
Clinical Need
With emerging new targeting therapies, there is an unmet clinical need for improved prognostication, treatment prediction, and treatment monitoring. Circulating tumor cells enumeration has the potential to become a valuable tool. However, circulating tumor cells are very rare, and the background of other blood cells is vast, which makes it extremely challenging to classify and count these cells.
Project Development
In the project, we will develop acoustic whole-blood cytometry. This will enable unbiased imaging and enumeration of circulating tumor cells through a panel of fluorescent antibodies with minimal pre-treatment.
Vision
The vision is that the approach will become standard equipment in hospital labs in the transition to more personalized healthcare.
Evaluation and Support
The project will evaluate key technical challenges on the path to commercialization. It has strong support from an industrial partner and from clinicians and pre-clinical researchers focused on breast and prostate cancer.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-10-2024 |
Einddatum | 31-3-2026 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- LUNDS UNIVERSITETpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Detecting epigenetic biomarkers in the blood for non-invasive precision oncologyDevelop new non-invasive diagnostic methods for cancer by analyzing epigenetic markers in circulating tumor DNA to improve sensitivity and monitor disease evolution. | ERC Starting... | € 1.500.000 | 2022 | Details |
Deep Label-Free Cell Imaging of Liquid Biopsies for Cancer MonitoringDevelop and commercialize a label-free interferometric phase microscopy device with AI for cost-effective cancer diagnosis and monitoring via liquid biopsies. | ERC Proof of... | € 150.000 | 2023 | Details |
Fast and simple biomarker detection by computational microscopyWe developed a fast, sensitive biomarker detection method for early diagnosis and monitoring of cancer treatments, aiming to improve patient outcomes through preventative diagnostics. | ERC Proof of... | € 150.000 | 2024 | Details |
Towards early cancer detection and tumor classification using epigenomic biomarkers in bloodEpiCblood aims to enhance early cancer detection by increasing cancer-specific cf-nucleosomes through innovative histone modification profiling and computational analysis for improved liquid biopsy assays. | ERC Starting... | € 1.499.999 | 2024 | Details |
Taking blood apart by soundThe project aims to develop an acoustic separation technology for blood components to improve resolution, efficiency, and quality in healthcare applications, ultimately facilitating market integration. | ERC Proof of... | € 150.000 | 2023 | Details |
Detecting epigenetic biomarkers in the blood for non-invasive precision oncology
Develop new non-invasive diagnostic methods for cancer by analyzing epigenetic markers in circulating tumor DNA to improve sensitivity and monitor disease evolution.
Deep Label-Free Cell Imaging of Liquid Biopsies for Cancer Monitoring
Develop and commercialize a label-free interferometric phase microscopy device with AI for cost-effective cancer diagnosis and monitoring via liquid biopsies.
Fast and simple biomarker detection by computational microscopy
We developed a fast, sensitive biomarker detection method for early diagnosis and monitoring of cancer treatments, aiming to improve patient outcomes through preventative diagnostics.
Towards early cancer detection and tumor classification using epigenomic biomarkers in blood
EpiCblood aims to enhance early cancer detection by increasing cancer-specific cf-nucleosomes through innovative histone modification profiling and computational analysis for improved liquid biopsy assays.
Taking blood apart by sound
The project aims to develop an acoustic separation technology for blood components to improve resolution, efficiency, and quality in healthcare applications, ultimately facilitating market integration.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Development and validation of a pan-cancer neutrophil biomarker test for predicting clinical benefit from immunotherapy based on flow cytometry analysis of blood samplesThe NeutroFlow project aims to develop a non-invasive blood test using a flow cytometry assay to predict cancer immunotherapy benefits, enhancing patient outcomes and reducing costs. | EIC Transition | € 2.499.999 | 2025 | Details |
DETACT - Detection of Enzymes and muTAtions for Cancer TreatmentCytura Therapeutics en ENPICOM ontwikkelen een innovatieve diagnostische assay voor vroege kankerdetectie door het meten van enzymactiviteit en mutatiepatronen in bloedcellen. | Mkb-innovati... | € 215.845 | 2019 | Details |
3D spheroids derived from single cells for discovering stochastic patterns behind metastasis3DSecret aims to revolutionize cancer treatment by analyzing single circulating tumor cells using advanced technologies to uncover stochastic patterns driving metastasis and improve diagnosis and prognosis. | EIC Pathfinder | € 2.591.050 | 2023 | Details |
Voorkomen van therapieresistentie bij kankerDit project onderzoekt een bloedgebaseerde methode voor vroege detectie van therapieresistentie bij kanker om levensverwachting te verbeteren. | Mkb-innovati... | € 20.000 | 2021 | Details |
A multiplexed biomimetic imaging platform for assessing single cell plasticity (Plastomics) and scoring of tumour malignancyThe PLAST_CELL project aims to develop a microfluidics-based imaging platform to quantify cancer cell plasticity, enhancing diagnosis and treatment of metastasis and therapy resistance. | EIC Pathfinder | € 2.982.792 | 2022 | Details |
Development and validation of a pan-cancer neutrophil biomarker test for predicting clinical benefit from immunotherapy based on flow cytometry analysis of blood samples
The NeutroFlow project aims to develop a non-invasive blood test using a flow cytometry assay to predict cancer immunotherapy benefits, enhancing patient outcomes and reducing costs.
DETACT - Detection of Enzymes and muTAtions for Cancer Treatment
Cytura Therapeutics en ENPICOM ontwikkelen een innovatieve diagnostische assay voor vroege kankerdetectie door het meten van enzymactiviteit en mutatiepatronen in bloedcellen.
3D spheroids derived from single cells for discovering stochastic patterns behind metastasis
3DSecret aims to revolutionize cancer treatment by analyzing single circulating tumor cells using advanced technologies to uncover stochastic patterns driving metastasis and improve diagnosis and prognosis.
Voorkomen van therapieresistentie bij kanker
Dit project onderzoekt een bloedgebaseerde methode voor vroege detectie van therapieresistentie bij kanker om levensverwachting te verbeteren.
A multiplexed biomimetic imaging platform for assessing single cell plasticity (Plastomics) and scoring of tumour malignancy
The PLAST_CELL project aims to develop a microfluidics-based imaging platform to quantify cancer cell plasticity, enhancing diagnosis and treatment of metastasis and therapy resistance.