TOMAC: Bioinspired Flow Generation in Tubeless Organ-on-a-chip using Magnetic Artificial Cilia
The TOMAC project develops a Magnetic Artificial Cilia pump for Organ-on-a-Chip systems, enabling automated, physiological fluid flow to improve drug testing accuracy and industry adoption.
Projectdetails
Introduction
Currently, 90% of the drugs fail to pass clinical trials. One of the key reasons is that the animal models used in the preclinical phase poorly predict the human response to the drugs. Organ-on-a-Chip (OoC) is a game-changing technology as one of the alternative methodologies to animal models.
Organ-on-a-Chip Technology
The heart of an OoC system is an ‘Organ-chip’: cm-sized devices with micro-channels and chambers in which human cells can be grown to closely mimic human tissues. More and more evidence shows that OoCs are more representative models than animals. However, the industry adoption of OoCs is still very limited.
Challenges in Adoption
OoC users and developers simply have to choose between:
- OoCs with physiologically relevant flow but not fit for standard operating procedures in the pharmaceutical industry.
- OoCs that are compatible but less physiological because of the absence or inadequacy of the flow.
The TOMAC Project
The TOMAC project offers a novel solution called “Magnetic Artificial Cilia (MAC) pump”: a chip-sized modular and tubeless flow system that, on one hand, eliminates manual handling and enables automation, and on the other hand, provides physiological flow for a range of organ models.
Technology Behind MAC
The technology behind MAC is based on micrometer-sized magnetic hair-like structures called Magnetic Artificial Cilia (MAC), which are inspired by cilia occurring in nature. The MAC are flexible micro-actuators that respond to a varying magnetic field (created by the actuation system) by rotating or oscillating, and thus create a controlled fluid flow.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-4-2024 |
Einddatum | 30-9-2025 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- TECHNISCHE UNIVERSITEIT EINDHOVENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
High Throughput Modelling and Measurement of Human Epithelial Models using Electrospun Conducting Polymers For Unlocking Data-Driven Drug DiscoveryThe project aims to enhance drug discovery by developing simplified Organ on Chip platforms through hydrogel electrospinning, enabling scalable monitoring and integration into industry workflows. | ERC Proof of... | € 150.000 | 2025 | Details |
Evolving Organs-on-Chip from developmental engineering to “mechanical re-evolution”EvOoC develops smart Organs-on-Chip platforms that utilize mechanical forces and machine learning to enhance tissue regeneration and disease modeling for innovative therapeutic solutions. | ERC Starting... | € 2.430.625 | 2023 | Details |
BioCHIPS - Biofabricated microfluidcs CHIPS based on self assembling of CNCs to recreate the hierarchical fibrillar structure of human tissues ECMBiochips aims to develop a high-throughput platform for fabricating cell-laden microtissues with biophysical cues from native ECMs using 3D bioprinting and CNC self-assembly. | ERC Proof of... | € 150.000 | 2022 | Details |
VAScularised Tumour Organoids on a chip with human placenta vessels as a preclinical model for anticancer therapies.VASTO Proof of Concept develops a microfluidic platform using human ex vivo blood vessels to evaluate CAR-T cell therapies against solid tumors, aiming to enhance personalized cancer treatment and reduce animal testing. | ERC Proof of... | € 150.000 | 2023 | Details |
Biomimetic Sensorized Barriers-on-a-Chip: Unveiling a new Generation of Market-Ready Investigation ToolsThis project aims to validate a novel, dynamic blood-brain barrier model with sensing features for improved drug screening in CNS pathologies, reducing reliance on animal testing and clinical trial failures. | ERC Proof of... | € 150.000 | 2024 | Details |
High Throughput Modelling and Measurement of Human Epithelial Models using Electrospun Conducting Polymers For Unlocking Data-Driven Drug Discovery
The project aims to enhance drug discovery by developing simplified Organ on Chip platforms through hydrogel electrospinning, enabling scalable monitoring and integration into industry workflows.
Evolving Organs-on-Chip from developmental engineering to “mechanical re-evolution”
EvOoC develops smart Organs-on-Chip platforms that utilize mechanical forces and machine learning to enhance tissue regeneration and disease modeling for innovative therapeutic solutions.
BioCHIPS - Biofabricated microfluidcs CHIPS based on self assembling of CNCs to recreate the hierarchical fibrillar structure of human tissues ECM
Biochips aims to develop a high-throughput platform for fabricating cell-laden microtissues with biophysical cues from native ECMs using 3D bioprinting and CNC self-assembly.
VAScularised Tumour Organoids on a chip with human placenta vessels as a preclinical model for anticancer therapies.
VASTO Proof of Concept develops a microfluidic platform using human ex vivo blood vessels to evaluate CAR-T cell therapies against solid tumors, aiming to enhance personalized cancer treatment and reduce animal testing.
Biomimetic Sensorized Barriers-on-a-Chip: Unveiling a new Generation of Market-Ready Investigation Tools
This project aims to validate a novel, dynamic blood-brain barrier model with sensing features for improved drug screening in CNS pathologies, reducing reliance on animal testing and clinical trial failures.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
PRECISIONDit project onderzoekt het gebruik van 3D-printing om de beperkingen van fotolithografie bij de productie van organ-on-chip modellen te overwinnen voor geneesmiddelentests en biologieonderzoek. | Mkb-innovati... | € 20.000 | 2022 | Details |
multisampLOC systeemCelnext en IMcoMET ontwikkelen een toegankelijk multisampLOC-systeem voor farmacologisch en biomedisch onderzoek, gericht op het verbeteren van de bemonsteling en throughput van 3D lever-modellen. | Mkb-innovati... | € 20.000 | 2022 | Details |
AdDitive mAnufacturing Microfluidica – ADAMPimBio B.V. ontwikkelt kosteneffectieve, klantspecifieke microfluïdische chips voor biotechnologie en gezondheidszorg om onderzoek te versnellen. | Mkb-innovati... | € 20.000 | 2020 | Details |
Developing the ‘μMass’ microplate: combining cell therapy and organ-on-chip to treat cancerHet project ontwikkelt een microplate voor in vitro celaggregaten en passieve flow om medicijnen en celtherapieën te testen. | Mkb-innovati... | € 256.550 | 2023 | Details |
Organ on a chip platform for drug discoveryBI/OND ontwikkelt innovatieve hardwareoplossingen voor organen op een chip om gepersonaliseerde medicijnen te bevorderen en het gebruik van dieren in pre-klinisch onderzoek te verminderen. | Mkb-innovati... | € 20.000 | 2021 | Details |
PRECISION
Dit project onderzoekt het gebruik van 3D-printing om de beperkingen van fotolithografie bij de productie van organ-on-chip modellen te overwinnen voor geneesmiddelentests en biologieonderzoek.
multisampLOC systeem
Celnext en IMcoMET ontwikkelen een toegankelijk multisampLOC-systeem voor farmacologisch en biomedisch onderzoek, gericht op het verbeteren van de bemonsteling en throughput van 3D lever-modellen.
AdDitive mAnufacturing Microfluidica – ADAM
PimBio B.V. ontwikkelt kosteneffectieve, klantspecifieke microfluïdische chips voor biotechnologie en gezondheidszorg om onderzoek te versnellen.
Developing the ‘μMass’ microplate: combining cell therapy and organ-on-chip to treat cancer
Het project ontwikkelt een microplate voor in vitro celaggregaten en passieve flow om medicijnen en celtherapieën te testen.
Organ on a chip platform for drug discovery
BI/OND ontwikkelt innovatieve hardwareoplossingen voor organen op een chip om gepersonaliseerde medicijnen te bevorderen en het gebruik van dieren in pre-klinisch onderzoek te verminderen.