Evolving Organs-on-Chip from developmental engineering to “mechanical re-evolution”

EvOoC develops smart Organs-on-Chip platforms that utilize mechanical forces and machine learning to enhance tissue regeneration and disease modeling for innovative therapeutic solutions.

Subsidie
€ 2.430.625
2023

Projectdetails

Introduction

EvOoC aims at developing smart mechanically active Organs-on-Chip platforms as clinically relevant in vitro setups to unravel mechanisms underlying tissue regeneration and progression of unmet diseases.

Background

A decade ago, developmental engineering (DE) proposed to model in vitro clinically relevant tissue replicas by recapitulating embryonic developmental events. Despite physical forces having recently been suggested as the main driver of developmental processes, mechanical conditioning never prevailed as a key DE strategy. This is related to a lack in current in vitro mechanobiology setups, mainly based on open loop systems, which disregard the fact that the native mechanical environment varies in time as a function of tissue state itself.

Vision

EvOoC's vision is to elevate mechanobiology as a leading DE approach through a ground-breaking paradigm, named mechanical re-evolution. This is based on the high-risk/high-gain hypothesis that an iterative manipulation of mechanical forces is necessary to guide in vitro adult tissue development at unprecedented levels.

Methodology

Towards this vision, I will deliver a new method (Evolving OoC, EvOoC), integrating three enabling functions:

  1. Move - to apply native-inspired mechanical forces to tissues in vitro;
  2. Sense - to monitor their comprehensive effect on tissue development;
  3. Adapt - to modulate forces as a function of tissue responses through machine learning (ML)-based algorithms, towards an unsupervised tissue evolution.

Applications

I will take advantage of two paradigmatic test cases (cartilage and heart) to showcase the power of mechanical re-evolution in guiding in vitro tissue physiological and pathological states. This will lead to the identification of a brand-new class of mechanotherapeutics for unmet pathologies.

Conclusion

By combining principles of microfabrication, DE, mechanobiology, and ML, EvOoC will revolutionize basic studies in tissue development and disease modeling, facilitating innovative translational strategies to tackle tissue repair in manifold applications.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.430.625
Totale projectbegroting€ 2.430.625

Tijdlijn

Startdatum1-9-2023
Einddatum31-8-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • POLITECNICO DI MILANOpenvoerder

Land(en)

Italy

Vergelijkbare projecten binnen European Research Council

ERC Advanced...

Engineering soft microdevices for the mechanical characterization and stimulation of microtissues

This project aims to advance mechanobiology by developing soft robotic micro-devices to study and manipulate 3D tissue responses, enhancing understanding of cell behavior and potential cancer treatments.

€ 3.475.660
ERC Proof of...

High Throughput Modelling and Measurement of Human Epithelial Models using Electrospun Conducting Polymers For Unlocking Data-Driven Drug Discovery

The project aims to enhance drug discovery by developing simplified Organ on Chip platforms through hydrogel electrospinning, enabling scalable monitoring and integration into industry workflows.

€ 150.000
ERC Proof of...

Engineered multi-well platforms integrating biochemical and biophysical cues for the functional maturation and electrophysiological monitoring of cardiac tissue models.

EMPATIC aims to develop a user-friendly multi-well platform for in vitro modeling of mature human cardiac tissues, enhancing cardiomyocyte maturation and enabling non-invasive electrophysiological monitoring.

€ 150.000
ERC Proof of...

Intelligent Device and Computational Software to Control Mechanical Stress and Deformation for Biological Testing

ISBIOMECH aims to develop a novel intelligent system for controlling mechanical environments in biological testing, enhancing in-vitro therapies and drug discovery for various pathologies.

€ 150.000
ERC Consolid...

Redesigning aortic endograft: enabling in-situ personalized aneurysm healing

EPEIUS aims to revolutionize aortic aneurysm treatment by developing a bioengineered, 3D-printed, drug-loaded endograft for early personalized healing through innovative in-vitro models.

€ 1.991.225

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

Origami Paper-based tecHnology fOr the innovativE aNd sustaInable Organ-on-Chip devices

The PHOENIX-OoC project aims to revolutionize Organ-on-Chip technology by developing origami paper-based devices for cell co-cultures and pharmacological studies, enhancing sustainability and functionality.

€ 2.202.333
Mkb-innovati...

PRECISION

Dit project onderzoekt het gebruik van 3D-printing om de beperkingen van fotolithografie bij de productie van organ-on-chip modellen te overwinnen voor geneesmiddelentests en biologieonderzoek.

€ 20.000
EIC Pathfinder

In-situ & operando organiC electrochemical transistors monitored by non-destructive spectroscopies for Organic cmos-like NeuromorphIc Circuits

ICONIC aims to advance implantable AI organic electronic devices for chronic disease management by investigating PMIECs, leading to smart drug-delivery systems with enhanced accuracy and safety.

€ 2.664.940
EIC Pathfinder

Next Generation 3D Tissue Models: Bio-Hybrid Hierarchical Organoid-Synthetic Tissues (Bio-HhOST) Comprised of Live and Artificial Cells.

Bio-HhOST aims to create bio-hybrid materials with living and artificial cells for dynamic communication, enhancing tissue modeling and reducing animal use in drug research.

€ 1.225.468