BioCHIPS - Biofabricated microfluidcs CHIPS based on self assembling of CNCs to recreate the hierarchical fibrillar structure of human tissues ECM
Biochips aims to develop a high-throughput platform for fabricating cell-laden microtissues with biophysical cues from native ECMs using 3D bioprinting and CNC self-assembly.
Projectdetails
Introduction
Biochips proposes an innovative bottom-up strategy to directly fabricate cell-laden devices that recreate the unique biophysical cues from the native fibrillar ECMs and allow the design of bioengineered microtissues with arbitrary geometries.
Platform Overview
The proposed platform combines the concepts of matrix-assisted 3D free-form bioprinting with the controlled self-assembly of colloidal cellulose nanocrystals (CNCs) to fabricate cell-laden constructs embedded within its own fibrillar CNC hydrogel device.
High-Throughput Capability
The proposed platform can:
- Array multiple independent single organ models in a high-throughput manner (the number will depend on the desired model complexity and well plate used).
- Link multiple tissue/organ models together with microfluidic circuits that can be user-defined on their CAD designs.
Features of the BioCHIPS System
The BioCHIPS system enables:
- High-resolution printing of complex and perfusable multicellular constructs without separating membranes or plastic barriers.
- Interaction between cells through signaling gradients created by compartmentalization in a bioinspired fibrillar matrix, supporting their long-term culture.
Additional Advantages
In addition to optical transparency for real-time monitoring, CNCs hydrogels can be bioorthogonally digested to release the embedded constructs for post-bioprinting analysis and processing. This is a crucial advantage in organ/tissue-on-chip applications.
Applications
Beyond the fabrication of perfusable microfluidic channels and cell-laden chambers for the development of 3D microphysiological systems as in vitro models, the intrinsic characteristics of this bioinspired platform further enable its scale-up to produce tissue-engineered constructs within its own bioreactor for in vitro maturation and biological tests at higher scales.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-11-2022 |
Einddatum | 30-4-2024 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- UNIVERSIDADE DO MINHOpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
3D-assembly of interactive microgels to grow in vitro vascularized, structured, and beating human cardiac tissues in high-throughputHEARTBEAT aims to create personalized, vascularized millimeter-scale heart tissues using innovative microgel assemblies to enhance stem cell interactions and mimic native environments. | ERC Consolid... | € 2.969.219 | 2022 | Details |
High Throughput Modelling and Measurement of Human Epithelial Models using Electrospun Conducting Polymers For Unlocking Data-Driven Drug DiscoveryThe project aims to enhance drug discovery by developing simplified Organ on Chip platforms through hydrogel electrospinning, enabling scalable monitoring and integration into industry workflows. | ERC Proof of... | € 150.000 | 2025 | Details |
Computationally and experimentallY BioEngineeRing the next generation of Growing HEARTsG-CYBERHEART aims to develop innovative experimental and computational methods for creating adaptable bioengineered hearts to improve treatment for congenital heart disease. | ERC Starting... | € 1.497.351 | 2022 | Details |
Biomimetic Sensorized Barriers-on-a-Chip: Unveiling a new Generation of Market-Ready Investigation ToolsThis project aims to validate a novel, dynamic blood-brain barrier model with sensing features for improved drug screening in CNS pathologies, reducing reliance on animal testing and clinical trial failures. | ERC Proof of... | € 150.000 | 2024 | Details |
Human based bioinks to engineer physiologically relevant tissuesHumanINK aims to validate human-based bioinks for 3D bioprinting, creating advanced cell culture environments to enhance drug development and reduce reliance on animal testing. | ERC Proof of... | € 150.000 | 2022 | Details |
3D-assembly of interactive microgels to grow in vitro vascularized, structured, and beating human cardiac tissues in high-throughput
HEARTBEAT aims to create personalized, vascularized millimeter-scale heart tissues using innovative microgel assemblies to enhance stem cell interactions and mimic native environments.
High Throughput Modelling and Measurement of Human Epithelial Models using Electrospun Conducting Polymers For Unlocking Data-Driven Drug Discovery
The project aims to enhance drug discovery by developing simplified Organ on Chip platforms through hydrogel electrospinning, enabling scalable monitoring and integration into industry workflows.
Computationally and experimentallY BioEngineeRing the next generation of Growing HEARTs
G-CYBERHEART aims to develop innovative experimental and computational methods for creating adaptable bioengineered hearts to improve treatment for congenital heart disease.
Biomimetic Sensorized Barriers-on-a-Chip: Unveiling a new Generation of Market-Ready Investigation Tools
This project aims to validate a novel, dynamic blood-brain barrier model with sensing features for improved drug screening in CNS pathologies, reducing reliance on animal testing and clinical trial failures.
Human based bioinks to engineer physiologically relevant tissues
HumanINK aims to validate human-based bioinks for 3D bioprinting, creating advanced cell culture environments to enhance drug development and reduce reliance on animal testing.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Een polymere microgestructureerde nanowellchip voor de analyse van individuele cellen op basis van microfabricage met behulp van 3D-printtechnologieHet project ontwikkelt betaalbare, op maat gemaakte micro-3D-geprinte chips voor single-cell analyses ter verbetering van kankerdiagnostiek en gepersonaliseerde therapieën. | Mkb-innovati... | € 167.760 | 2023 | Details |
AdDitive mAnufacturing Microfluidica – ADAMPimBio B.V. ontwikkelt kosteneffectieve, klantspecifieke microfluïdische chips voor biotechnologie en gezondheidszorg om onderzoek te versnellen. | Mkb-innovati... | € 20.000 | 2020 | Details |
Microfluïdische spier-on-chipPimbio B.V. ontwikkelt een microfluïdische chip voor de kweek van geïnnerveerde spieren ter verbetering van ziektebehandeling en herstel. | Mkb-innovati... | € 18.550 | 2024 | Details |
Next Generation 3D Tissue Models: Bio-Hybrid Hierarchical Organoid-Synthetic Tissues (Bio-HhOST) Comprised of Live and Artificial Cells.Bio-HhOST aims to create bio-hybrid materials with living and artificial cells for dynamic communication, enhancing tissue modeling and reducing animal use in drug research. | EIC Pathfinder | € 1.225.468 | 2024 | Details |
High-throughput ultrasound-based volumetric 3D printing for tissue engineeringSONOCRAFT aims to revolutionize myocardial cell construct bioprinting by combining rapid volumetric printing with ultrasonic manipulation to create functional cardiac models for drug testing and disease research. | EIC Pathfinder | € 2.999.625 | 2025 | Details |
Een polymere microgestructureerde nanowellchip voor de analyse van individuele cellen op basis van microfabricage met behulp van 3D-printtechnologie
Het project ontwikkelt betaalbare, op maat gemaakte micro-3D-geprinte chips voor single-cell analyses ter verbetering van kankerdiagnostiek en gepersonaliseerde therapieën.
AdDitive mAnufacturing Microfluidica – ADAM
PimBio B.V. ontwikkelt kosteneffectieve, klantspecifieke microfluïdische chips voor biotechnologie en gezondheidszorg om onderzoek te versnellen.
Microfluïdische spier-on-chip
Pimbio B.V. ontwikkelt een microfluïdische chip voor de kweek van geïnnerveerde spieren ter verbetering van ziektebehandeling en herstel.
Next Generation 3D Tissue Models: Bio-Hybrid Hierarchical Organoid-Synthetic Tissues (Bio-HhOST) Comprised of Live and Artificial Cells.
Bio-HhOST aims to create bio-hybrid materials with living and artificial cells for dynamic communication, enhancing tissue modeling and reducing animal use in drug research.
High-throughput ultrasound-based volumetric 3D printing for tissue engineering
SONOCRAFT aims to revolutionize myocardial cell construct bioprinting by combining rapid volumetric printing with ultrasonic manipulation to create functional cardiac models for drug testing and disease research.