Detection of pedestrians and cyclist outside a line of sight
Developing a low-frequency radar system to enhance road safety by detecting cyclists and pedestrians, even when obstructed, to assist drivers in making informed decisions.
Projectdetails
Introduction
The number of road accidents continues to increase dramatically each year. Cyclists and pedestrians, being a part of the daily traffic, keep challenging drivers, thus making safety issues increasingly important. Furthermore, miniature electrical vehicles, paving their way through traffic and being in many cases unseen by drivers, put themselves in danger. Improving driving safety, being always a subject to technological efforts, is one of the most important challenges of modern society.
Technological Advancements
Continuously developing technologies offer a broad range of tools capable of assisting a driver in decision-making. Moreover, autonomous vehicles, nevertheless facing a broad range of challenges nowadays, will certainly sooner or later contribute to the endeavor.
Current Safety Systems
Optical camera solutions, LIDARs, and high-frequency radars are already demonstrating exceptional assistance in driving safety by providing overlapping and complementary data. However, all existing safety systems require having an unperturbed line of sight to obstacles. This is a severe limitation, which causes those systems to overlook numerous dangerous events, including:
- Pedestrians stepping onto the road from behind a parked vehicle
- Other unforeseen obstacles
Limitations of Low Frequency Waves
MHz and lower GHz frequencies are known to penetrate material bodies and diffract around obstacles. For example, we have a Wi-Fi signal in an office, even though the router is placed behind a wall in a corridor. However, low-frequency waves are never used in automotive applications owing to the low range and angular resolutions they can grant, as it is commonly believed.
Bypassing Limitations
While this statement is almost a ground truth in the field, it can be bypassed if preliminary information on an object does exist. This includes, but is not limited to:
- Rotating bicycle wheels
- Human breath
- Several other indicators
Project Development
Here we will develop a low-frequency radar for detecting cyclists and pedestrians with a resolution sufficient to ensure road safety and assist drivers in making the right decisions.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-6-2022 |
Einddatum | 30-11-2023 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- TEL AVIV UNIVERSITYpenvoerder
Land(en)
Geen landeninformatie beschikbaar
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Forecasting and Preventing Human ErrorsThis project aims to develop AI methods that predict human errors from video data and provide auditory feedback to prevent such errors, ultimately reducing their social and economic costs. | ERC Consolid... | € 1.999.629 | 2022 | Details |
Real-Time Urban Mobility Management via Intelligent UAV-based SensingURANUS aims to enhance urban mobility management through real-time UAV-based traffic sensing, enabling intelligent monitoring and control of vehicular and pedestrian traffic. | ERC Consolid... | € 1.999.938 | 2023 | Details |
SUrrogate measures for SAFE autonomous and connected mobilitySUperSAFE aims to develop a proactive safety evaluation method for the interaction between conventional and connected automated vehicles to enhance traffic safety and support European zero-fatality goals. | ERC Starting... | € 1.500.000 | 2023 | Details |
Forecasting and Preventing Human Errors
This project aims to develop AI methods that predict human errors from video data and provide auditory feedback to prevent such errors, ultimately reducing their social and economic costs.
Real-Time Urban Mobility Management via Intelligent UAV-based Sensing
URANUS aims to enhance urban mobility management through real-time UAV-based traffic sensing, enabling intelligent monitoring and control of vehicular and pedestrian traffic.
SUrrogate measures for SAFE autonomous and connected mobility
SUperSAFE aims to develop a proactive safety evaluation method for the interaction between conventional and connected automated vehicles to enhance traffic safety and support European zero-fatality goals.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Nano meta components for electronic smart wireless systemsSMARTWAY aims to develop innovative radar sensor architectures using 2D materials and metamaterials for enhanced performance and energy efficiency in IoT applications, culminating in two industry-ready demonstrators. | EIC Transition | € 2.457.765 | 2023 | Details |
CrimeSenseHet project onderzoekt de haalbaarheid van een automatisch geweldsdetectiesysteem voor bewakingscamera's op basis van virtual gaming data. | Mkb-innovati... | € 20.000 | 2022 | Details |
Diepgaande verkeersanalyse met beeld- en geluidsherkenningHet project ontwikkelt een geavanceerd systeem voor real-time beeld- en geluidsherkenning van diverse verkeersdeelnemers om verkeersstromen beter te analyseren en reguleren in complexe stedelijke gebieden. | Mkb-innovati... | € 349.962 | 2016 | Details |
Mobiliteitsregistratie en beveiligingstechnologie HusenseHusense ontwikkelt privacy-vriendelijke radar- en AI-technologie om anoniem menselijk gedrag in publieke ruimtes te registreren en zo de veiligheid te verbeteren zonder privacy te schenden. | Mkb-innovati... | € 20.000 | 2022 | Details |
Validatie van interpretaties door rijhulpsystemenV-Tron onderzoekt de haalbaarheid van softwarematige validatie van rijhulpsystemen om verkeersveiligheid en betrouwbaarheid te verbeteren. | Mkb-innovati... | € 20.000 | 2020 | Details |
Nano meta components for electronic smart wireless systems
SMARTWAY aims to develop innovative radar sensor architectures using 2D materials and metamaterials for enhanced performance and energy efficiency in IoT applications, culminating in two industry-ready demonstrators.
CrimeSense
Het project onderzoekt de haalbaarheid van een automatisch geweldsdetectiesysteem voor bewakingscamera's op basis van virtual gaming data.
Diepgaande verkeersanalyse met beeld- en geluidsherkenning
Het project ontwikkelt een geavanceerd systeem voor real-time beeld- en geluidsherkenning van diverse verkeersdeelnemers om verkeersstromen beter te analyseren en reguleren in complexe stedelijke gebieden.
Mobiliteitsregistratie en beveiligingstechnologie Husense
Husense ontwikkelt privacy-vriendelijke radar- en AI-technologie om anoniem menselijk gedrag in publieke ruimtes te registreren en zo de veiligheid te verbeteren zonder privacy te schenden.
Validatie van interpretaties door rijhulpsystemen
V-Tron onderzoekt de haalbaarheid van softwarematige validatie van rijhulpsystemen om verkeersveiligheid en betrouwbaarheid te verbeteren.